Update README.md
Browse files
README.md
CHANGED
@@ -31,7 +31,11 @@ model = AutoModelForCausalLM.from_pretrained("hiyouga/baichuan-7b-sft", trust_re
|
|
31 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
32 |
|
33 |
query = "晚上睡不着怎么办"
|
34 |
-
template =
|
|
|
|
|
|
|
|
|
35 |
|
36 |
inputs = tokenizer([template.format(query)], return_tensors="pt")
|
37 |
inputs = inputs.to("cuda")
|
@@ -41,7 +45,7 @@ generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer)
|
|
41 |
You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning
|
42 |
|
43 |
```bash
|
44 |
-
python src/cli_demo.py --model_name_or_path hiyouga/baichuan-7b-sft
|
45 |
```
|
46 |
|
47 |
---
|
@@ -49,10 +53,12 @@ python src/cli_demo.py --model_name_or_path hiyouga/baichuan-7b-sft
|
|
49 |
You could reproduce our results with the following scripts using [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning):
|
50 |
|
51 |
```bash
|
52 |
-
CUDA_VISIBLE_DEVICES=0 python src/
|
|
|
53 |
--model_name_or_path baichuan-inc/baichuan-7B \
|
54 |
--do_train \
|
55 |
--dataset alpaca_gpt4_en,alpaca_gpt4_zh,codealpaca \
|
|
|
56 |
--finetuning_type lora \
|
57 |
--lora_rank 16 \
|
58 |
--lora_target W_pack,o_proj,gate_proj,down_proj,up_proj \
|
@@ -80,4 +86,4 @@ Loss curve on training set:
|
|
80 |
![train](assets/training_loss.svg)
|
81 |
|
82 |
Loss curve on evaluation set:
|
83 |
-
![eval](assets/eval_loss.svg)
|
|
|
31 |
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
32 |
|
33 |
query = "晚上睡不着怎么办"
|
34 |
+
template = (
|
35 |
+
"A chat between a curious user and an artificial intelligence assistant. "
|
36 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
37 |
+
"Human: {}\nAssistant: "
|
38 |
+
)
|
39 |
|
40 |
inputs = tokenizer([template.format(query)], return_tensors="pt")
|
41 |
inputs = inputs.to("cuda")
|
|
|
45 |
You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning
|
46 |
|
47 |
```bash
|
48 |
+
python src/cli_demo.py --template default --model_name_or_path hiyouga/baichuan-7b-sft
|
49 |
```
|
50 |
|
51 |
---
|
|
|
53 |
You could reproduce our results with the following scripts using [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning):
|
54 |
|
55 |
```bash
|
56 |
+
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
57 |
+
--stage sft \
|
58 |
--model_name_or_path baichuan-inc/baichuan-7B \
|
59 |
--do_train \
|
60 |
--dataset alpaca_gpt4_en,alpaca_gpt4_zh,codealpaca \
|
61 |
+
--template default \
|
62 |
--finetuning_type lora \
|
63 |
--lora_rank 16 \
|
64 |
--lora_target W_pack,o_proj,gate_proj,down_proj,up_proj \
|
|
|
86 |
![train](assets/training_loss.svg)
|
87 |
|
88 |
Loss curve on evaluation set:
|
89 |
+
![eval](assets/eval_loss.svg)
|