--- license: llama2 datasets: - tatsu-lab/alpaca - OpenAssistant/oasst1 language: - zh - en library_name: transformers tags: - baichuan - lora pipeline_tag: text-generation inference: false --- A bilingual instruction-tuned LoRA model of https://huggingface.co/meta-llama/Llama-2-13b-hf - Instruction-following datasets used: alpaca, alpaca-zh, open assistant - Training framework: https://github.com/hiyouga/LLaMA-Efficient-Tuning Usage: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer tokenizer = AutoTokenizer.from_pretrained("hiyouga/Llama-2-Chinese-13b-chat") model = AutoModelForCausalLM.from_pretrained("hiyouga/Llama-2-Chinese-13b-chat").cuda() streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) query = "晚上睡不着怎么办" template = ( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.\n" "Human: {}\nAssistant: " ) inputs = tokenizer([template.format(query)], return_tensors="pt") inputs = inputs.to("cuda") generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer) ``` You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning ```bash python src/cli_demo.py --model_name_or_path hiyouga/Llama-2-Chinese-13b-chat ``` --- Loss curve: ![loss](loss.png)