--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_sgd_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.28888888888888886 --- # hushem_1x_deit_small_sgd_00001_fold1 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5045 - Accuracy: 0.2889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5103 | 0.2889 | | 1.5406 | 2.0 | 12 | 1.5100 | 0.2889 | | 1.5406 | 3.0 | 18 | 1.5097 | 0.2889 | | 1.5187 | 4.0 | 24 | 1.5094 | 0.2889 | | 1.5371 | 5.0 | 30 | 1.5091 | 0.2889 | | 1.5371 | 6.0 | 36 | 1.5089 | 0.2889 | | 1.517 | 7.0 | 42 | 1.5086 | 0.2889 | | 1.517 | 8.0 | 48 | 1.5084 | 0.2889 | | 1.5407 | 9.0 | 54 | 1.5081 | 0.2889 | | 1.5157 | 10.0 | 60 | 1.5079 | 0.2889 | | 1.5157 | 11.0 | 66 | 1.5077 | 0.2889 | | 1.5121 | 12.0 | 72 | 1.5074 | 0.2889 | | 1.5121 | 13.0 | 78 | 1.5072 | 0.2889 | | 1.538 | 14.0 | 84 | 1.5070 | 0.2889 | | 1.5262 | 15.0 | 90 | 1.5068 | 0.2889 | | 1.5262 | 16.0 | 96 | 1.5066 | 0.2889 | | 1.5233 | 17.0 | 102 | 1.5064 | 0.2889 | | 1.5233 | 18.0 | 108 | 1.5063 | 0.2889 | | 1.5376 | 19.0 | 114 | 1.5061 | 0.2889 | | 1.5005 | 20.0 | 120 | 1.5060 | 0.2889 | | 1.5005 | 21.0 | 126 | 1.5058 | 0.2889 | | 1.5271 | 22.0 | 132 | 1.5057 | 0.2889 | | 1.5271 | 23.0 | 138 | 1.5056 | 0.2889 | | 1.5205 | 24.0 | 144 | 1.5055 | 0.2889 | | 1.5085 | 25.0 | 150 | 1.5054 | 0.2889 | | 1.5085 | 26.0 | 156 | 1.5053 | 0.2889 | | 1.5221 | 27.0 | 162 | 1.5052 | 0.2889 | | 1.5221 | 28.0 | 168 | 1.5051 | 0.2889 | | 1.5344 | 29.0 | 174 | 1.5050 | 0.2889 | | 1.5325 | 30.0 | 180 | 1.5049 | 0.2889 | | 1.5325 | 31.0 | 186 | 1.5048 | 0.2889 | | 1.5365 | 32.0 | 192 | 1.5048 | 0.2889 | | 1.5365 | 33.0 | 198 | 1.5047 | 0.2889 | | 1.5421 | 34.0 | 204 | 1.5046 | 0.2889 | | 1.5276 | 35.0 | 210 | 1.5046 | 0.2889 | | 1.5276 | 36.0 | 216 | 1.5046 | 0.2889 | | 1.5101 | 37.0 | 222 | 1.5045 | 0.2889 | | 1.5101 | 38.0 | 228 | 1.5045 | 0.2889 | | 1.5025 | 39.0 | 234 | 1.5045 | 0.2889 | | 1.5405 | 40.0 | 240 | 1.5045 | 0.2889 | | 1.5405 | 41.0 | 246 | 1.5045 | 0.2889 | | 1.5373 | 42.0 | 252 | 1.5045 | 0.2889 | | 1.5373 | 43.0 | 258 | 1.5045 | 0.2889 | | 1.5465 | 44.0 | 264 | 1.5045 | 0.2889 | | 1.4924 | 45.0 | 270 | 1.5045 | 0.2889 | | 1.4924 | 46.0 | 276 | 1.5045 | 0.2889 | | 1.521 | 47.0 | 282 | 1.5045 | 0.2889 | | 1.521 | 48.0 | 288 | 1.5045 | 0.2889 | | 1.494 | 49.0 | 294 | 1.5045 | 0.2889 | | 1.5268 | 50.0 | 300 | 1.5045 | 0.2889 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1