--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6097560975609756 --- # hushem_1x_deit_tiny_rms_001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1358 - Accuracy: 0.6098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 4.7231 | 0.2683 | | 4.2141 | 2.0 | 12 | 1.8531 | 0.2683 | | 4.2141 | 3.0 | 18 | 1.6449 | 0.2439 | | 1.9845 | 4.0 | 24 | 1.4265 | 0.2439 | | 1.5807 | 5.0 | 30 | 2.0165 | 0.2439 | | 1.5807 | 6.0 | 36 | 1.5975 | 0.2683 | | 1.5979 | 7.0 | 42 | 1.4305 | 0.3171 | | 1.5979 | 8.0 | 48 | 1.4587 | 0.2683 | | 1.4992 | 9.0 | 54 | 1.2917 | 0.3171 | | 1.4954 | 10.0 | 60 | 1.2462 | 0.4390 | | 1.4954 | 11.0 | 66 | 1.2479 | 0.2683 | | 1.415 | 12.0 | 72 | 1.1246 | 0.5122 | | 1.415 | 13.0 | 78 | 1.1689 | 0.4878 | | 1.374 | 14.0 | 84 | 1.3767 | 0.2927 | | 1.3675 | 15.0 | 90 | 1.1692 | 0.4146 | | 1.3675 | 16.0 | 96 | 1.6528 | 0.2927 | | 1.319 | 17.0 | 102 | 1.3151 | 0.3659 | | 1.319 | 18.0 | 108 | 1.1475 | 0.4146 | | 1.3335 | 19.0 | 114 | 1.1506 | 0.3415 | | 1.2819 | 20.0 | 120 | 1.2300 | 0.3902 | | 1.2819 | 21.0 | 126 | 1.1641 | 0.4146 | | 1.2507 | 22.0 | 132 | 1.4148 | 0.3659 | | 1.2507 | 23.0 | 138 | 1.3061 | 0.3415 | | 1.2134 | 24.0 | 144 | 1.2367 | 0.3415 | | 1.2611 | 25.0 | 150 | 1.2383 | 0.4878 | | 1.2611 | 26.0 | 156 | 1.0375 | 0.4878 | | 1.2053 | 27.0 | 162 | 1.1983 | 0.4878 | | 1.2053 | 28.0 | 168 | 1.1898 | 0.4146 | | 1.1593 | 29.0 | 174 | 1.1479 | 0.4878 | | 1.2426 | 30.0 | 180 | 1.1382 | 0.5610 | | 1.2426 | 31.0 | 186 | 1.0558 | 0.5610 | | 1.1866 | 32.0 | 192 | 1.1895 | 0.4390 | | 1.1866 | 33.0 | 198 | 1.2172 | 0.4146 | | 1.1453 | 34.0 | 204 | 1.3773 | 0.4146 | | 1.1026 | 35.0 | 210 | 1.1168 | 0.5122 | | 1.1026 | 36.0 | 216 | 1.1184 | 0.5610 | | 1.131 | 37.0 | 222 | 1.1344 | 0.5366 | | 1.131 | 38.0 | 228 | 1.0932 | 0.5122 | | 1.1098 | 39.0 | 234 | 1.1070 | 0.6098 | | 1.0797 | 40.0 | 240 | 1.1237 | 0.5854 | | 1.0797 | 41.0 | 246 | 1.1366 | 0.6098 | | 1.0648 | 42.0 | 252 | 1.1358 | 0.6098 | | 1.0648 | 43.0 | 258 | 1.1358 | 0.6098 | | 1.0281 | 44.0 | 264 | 1.1358 | 0.6098 | | 1.0542 | 45.0 | 270 | 1.1358 | 0.6098 | | 1.0542 | 46.0 | 276 | 1.1358 | 0.6098 | | 1.0409 | 47.0 | 282 | 1.1358 | 0.6098 | | 1.0409 | 48.0 | 288 | 1.1358 | 0.6098 | | 1.0504 | 49.0 | 294 | 1.1358 | 0.6098 | | 1.0111 | 50.0 | 300 | 1.1358 | 0.6098 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1