hkivancoral's picture
End of training
06e1f1d
|
raw
history blame
4.81 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_sgd_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.26666666666666666

hushem_1x_deit_tiny_sgd_001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3946
  • Accuracy: 0.2667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.6081 0.2889
1.6517 2.0 12 1.5532 0.3333
1.6517 3.0 18 1.5183 0.3111
1.5073 4.0 24 1.4941 0.2
1.4569 5.0 30 1.4762 0.1333
1.4569 6.0 36 1.4655 0.1333
1.377 7.0 42 1.4570 0.1333
1.377 8.0 48 1.4508 0.1333
1.3495 9.0 54 1.4443 0.1333
1.3234 10.0 60 1.4390 0.1333
1.3234 11.0 66 1.4339 0.1778
1.2813 12.0 72 1.4301 0.1778
1.2813 13.0 78 1.4257 0.2
1.3124 14.0 84 1.4223 0.2
1.2528 15.0 90 1.4195 0.2
1.2528 16.0 96 1.4170 0.2222
1.2252 17.0 102 1.4152 0.2
1.2252 18.0 108 1.4125 0.2222
1.2441 19.0 114 1.4108 0.2
1.1872 20.0 120 1.4088 0.2
1.1872 21.0 126 1.4068 0.2
1.1818 22.0 132 1.4052 0.2222
1.1818 23.0 138 1.4041 0.2
1.1835 24.0 144 1.4032 0.2222
1.1551 25.0 150 1.4021 0.2222
1.1551 26.0 156 1.4013 0.2222
1.1564 27.0 162 1.4008 0.2
1.1564 28.0 168 1.3999 0.2222
1.1662 29.0 174 1.3989 0.2222
1.116 30.0 180 1.3985 0.2222
1.116 31.0 186 1.3976 0.2444
1.153 32.0 192 1.3972 0.2444
1.153 33.0 198 1.3964 0.2444
1.1437 34.0 204 1.3958 0.2444
1.1259 35.0 210 1.3954 0.2444
1.1259 36.0 216 1.3954 0.2667
1.1125 37.0 222 1.3951 0.2667
1.1125 38.0 228 1.3951 0.2667
1.0816 39.0 234 1.3948 0.2667
1.1207 40.0 240 1.3948 0.2667
1.1207 41.0 246 1.3947 0.2667
1.1291 42.0 252 1.3946 0.2667
1.1291 43.0 258 1.3946 0.2667
1.1338 44.0 264 1.3946 0.2667
1.1093 45.0 270 1.3946 0.2667
1.1093 46.0 276 1.3946 0.2667
1.1123 47.0 282 1.3946 0.2667
1.1123 48.0 288 1.3946 0.2667
1.096 49.0 294 1.3946 0.2667
1.1328 50.0 300 1.3946 0.2667

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1