hkivancoral's picture
End of training
e32a1be
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_sgd_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3488372093023256

hushem_1x_deit_tiny_sgd_001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2767
  • Accuracy: 0.3488

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.6231 0.2791
1.6502 2.0 12 1.5615 0.2791
1.6502 3.0 18 1.5208 0.2558
1.5138 4.0 24 1.4935 0.2093
1.441 5.0 30 1.4720 0.2093
1.441 6.0 36 1.4541 0.2326
1.3942 7.0 42 1.4402 0.3023
1.3942 8.0 48 1.4271 0.3023
1.3895 9.0 54 1.4159 0.2791
1.3382 10.0 60 1.4069 0.2791
1.3382 11.0 66 1.3983 0.2558
1.3326 12.0 72 1.3893 0.2558
1.3326 13.0 78 1.3800 0.2558
1.3102 14.0 84 1.3707 0.2558
1.3163 15.0 90 1.3619 0.2791
1.3163 16.0 96 1.3528 0.2791
1.295 17.0 102 1.3463 0.2791
1.295 18.0 108 1.3391 0.2791
1.2552 19.0 114 1.3325 0.3023
1.2682 20.0 120 1.3269 0.3023
1.2682 21.0 126 1.3221 0.3256
1.2578 22.0 132 1.3173 0.3488
1.2578 23.0 138 1.3126 0.3488
1.2124 24.0 144 1.3087 0.3488
1.2284 25.0 150 1.3049 0.3488
1.2284 26.0 156 1.3017 0.3488
1.2178 27.0 162 1.2982 0.3488
1.2178 28.0 168 1.2955 0.3488
1.2019 29.0 174 1.2931 0.3488
1.2029 30.0 180 1.2906 0.3488
1.2029 31.0 186 1.2886 0.3488
1.1935 32.0 192 1.2863 0.3488
1.1935 33.0 198 1.2843 0.3488
1.164 34.0 204 1.2826 0.3488
1.1999 35.0 210 1.2814 0.3488
1.1999 36.0 216 1.2801 0.3488
1.1813 37.0 222 1.2790 0.3488
1.1813 38.0 228 1.2781 0.3488
1.1753 39.0 234 1.2775 0.3488
1.1877 40.0 240 1.2770 0.3488
1.1877 41.0 246 1.2768 0.3488
1.1774 42.0 252 1.2767 0.3488
1.1774 43.0 258 1.2767 0.3488
1.1704 44.0 264 1.2767 0.3488
1.1843 45.0 270 1.2767 0.3488
1.1843 46.0 276 1.2767 0.3488
1.1726 47.0 282 1.2767 0.3488
1.1726 48.0 288 1.2767 0.3488
1.1541 49.0 294 1.2767 0.3488
1.1928 50.0 300 1.2767 0.3488

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1