--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_tiny_f5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8536585365853658 --- # hushem_40x_deit_tiny_f5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7504 - Accuracy: 0.8537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0726 | 1.0 | 110 | 0.3341 | 0.9024 | | 0.0333 | 2.0 | 220 | 0.9022 | 0.7561 | | 0.0011 | 3.0 | 330 | 0.5944 | 0.8293 | | 0.0026 | 4.0 | 440 | 0.6847 | 0.8293 | | 0.0012 | 5.0 | 550 | 1.1544 | 0.8049 | | 0.0005 | 6.0 | 660 | 0.4633 | 0.8537 | | 0.0031 | 7.0 | 770 | 0.5821 | 0.8780 | | 0.0 | 8.0 | 880 | 0.7434 | 0.8780 | | 0.0 | 9.0 | 990 | 0.7497 | 0.8537 | | 0.0 | 10.0 | 1100 | 0.7504 | 0.8537 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1