hkivancoral's picture
End of training
f30af80
|
raw
history blame
4.88 kB
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_adamax_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9151414309484193

smids_10x_beit_large_adamax_00001_fold2

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9196
  • Accuracy: 0.9151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1587 1.0 750 0.2691 0.9101
0.0471 2.0 1500 0.3138 0.9135
0.0407 3.0 2250 0.4729 0.9118
0.0287 4.0 3000 0.5798 0.9068
0.012 5.0 3750 0.7233 0.9118
0.0109 6.0 4500 0.7175 0.9168
0.0017 7.0 5250 0.7940 0.9085
0.0129 8.0 6000 0.7917 0.9068
0.0001 9.0 6750 0.8466 0.9068
0.0033 10.0 7500 0.8662 0.9002
0.0001 11.0 8250 0.9262 0.9035
0.0005 12.0 9000 0.8648 0.9035
0.0001 13.0 9750 0.9176 0.9101
0.0001 14.0 10500 0.9531 0.8985
0.0002 15.0 11250 0.9250 0.9035
0.0418 16.0 12000 0.9389 0.9085
0.0 17.0 12750 0.9725 0.9035
0.0001 18.0 13500 0.9072 0.9101
0.0173 19.0 14250 0.9123 0.9151
0.0042 20.0 15000 0.9275 0.9068
0.0 21.0 15750 0.9111 0.9101
0.0243 22.0 16500 0.9348 0.9101
0.0002 23.0 17250 1.0125 0.9052
0.0002 24.0 18000 0.8943 0.9101
0.0 25.0 18750 1.0215 0.9035
0.0001 26.0 19500 0.9907 0.9085
0.0358 27.0 20250 0.9413 0.9101
0.0003 28.0 21000 0.8860 0.9201
0.0 29.0 21750 0.9273 0.9218
0.0 30.0 22500 0.9583 0.9068
0.0 31.0 23250 0.9280 0.9218
0.0 32.0 24000 0.9420 0.9168
0.0 33.0 24750 0.9244 0.9185
0.0 34.0 25500 0.9598 0.9085
0.0 35.0 26250 0.9576 0.9101
0.0 36.0 27000 0.9574 0.9101
0.0013 37.0 27750 0.9671 0.9101
0.0 38.0 28500 0.9627 0.9101
0.0 39.0 29250 0.9639 0.9118
0.0001 40.0 30000 0.9418 0.9118
0.0003 41.0 30750 0.9216 0.9135
0.0 42.0 31500 0.9226 0.9185
0.0 43.0 32250 0.9076 0.9218
0.0 44.0 33000 0.9133 0.9151
0.0006 45.0 33750 0.9164 0.9151
0.0 46.0 34500 0.9118 0.9168
0.0 47.0 35250 0.9173 0.9151
0.0 48.0 36000 0.9178 0.9101
0.0 49.0 36750 0.9196 0.9135
0.0 50.0 37500 0.9196 0.9151

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2