hkivancoral
commited on
Commit
•
a5beb84
1
Parent(s):
d16ec0b
End of training
Browse files- README.md +125 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/beit-large-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: smids_10x_beit_large_adamax_001_fold1
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: test
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.9048414023372288
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# smids_10x_beit_large_adamax_001_fold1
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.9751
|
36 |
+
- Accuracy: 0.9048
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.001
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 50
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
68 |
+
| 0.3471 | 1.0 | 751 | 0.3720 | 0.8631 |
|
69 |
+
| 0.2879 | 2.0 | 1502 | 0.4078 | 0.8364 |
|
70 |
+
| 0.2355 | 3.0 | 2253 | 0.4002 | 0.8831 |
|
71 |
+
| 0.2335 | 4.0 | 3004 | 0.2992 | 0.8831 |
|
72 |
+
| 0.1816 | 5.0 | 3755 | 0.3290 | 0.8965 |
|
73 |
+
| 0.1386 | 6.0 | 4506 | 0.3986 | 0.8898 |
|
74 |
+
| 0.1637 | 7.0 | 5257 | 0.4542 | 0.8681 |
|
75 |
+
| 0.0627 | 8.0 | 6008 | 0.4567 | 0.8965 |
|
76 |
+
| 0.0985 | 9.0 | 6759 | 0.3926 | 0.9015 |
|
77 |
+
| 0.1363 | 10.0 | 7510 | 0.4519 | 0.8848 |
|
78 |
+
| 0.0463 | 11.0 | 8261 | 0.5853 | 0.8898 |
|
79 |
+
| 0.023 | 12.0 | 9012 | 0.5711 | 0.8865 |
|
80 |
+
| 0.0292 | 13.0 | 9763 | 0.5829 | 0.8932 |
|
81 |
+
| 0.0137 | 14.0 | 10514 | 0.5739 | 0.8965 |
|
82 |
+
| 0.0034 | 15.0 | 11265 | 0.6922 | 0.8815 |
|
83 |
+
| 0.0201 | 16.0 | 12016 | 0.6833 | 0.8948 |
|
84 |
+
| 0.0068 | 17.0 | 12767 | 0.7845 | 0.8898 |
|
85 |
+
| 0.0084 | 18.0 | 13518 | 0.6851 | 0.8781 |
|
86 |
+
| 0.0033 | 19.0 | 14269 | 0.6219 | 0.8998 |
|
87 |
+
| 0.0023 | 20.0 | 15020 | 0.5986 | 0.8982 |
|
88 |
+
| 0.0011 | 21.0 | 15771 | 0.6825 | 0.8965 |
|
89 |
+
| 0.0011 | 22.0 | 16522 | 0.7971 | 0.8932 |
|
90 |
+
| 0.027 | 23.0 | 17273 | 0.5546 | 0.9098 |
|
91 |
+
| 0.0061 | 24.0 | 18024 | 0.6400 | 0.8932 |
|
92 |
+
| 0.0001 | 25.0 | 18775 | 0.6875 | 0.8965 |
|
93 |
+
| 0.0111 | 26.0 | 19526 | 0.7316 | 0.8965 |
|
94 |
+
| 0.0029 | 27.0 | 20277 | 0.8142 | 0.8865 |
|
95 |
+
| 0.0004 | 28.0 | 21028 | 0.7441 | 0.8915 |
|
96 |
+
| 0.0043 | 29.0 | 21779 | 0.7052 | 0.8965 |
|
97 |
+
| 0.0 | 30.0 | 22530 | 0.7049 | 0.9048 |
|
98 |
+
| 0.0 | 31.0 | 23281 | 0.8253 | 0.9149 |
|
99 |
+
| 0.0005 | 32.0 | 24032 | 0.6696 | 0.9065 |
|
100 |
+
| 0.0001 | 33.0 | 24783 | 0.8050 | 0.9065 |
|
101 |
+
| 0.0 | 34.0 | 25534 | 0.8833 | 0.9015 |
|
102 |
+
| 0.0 | 35.0 | 26285 | 0.8344 | 0.9032 |
|
103 |
+
| 0.0 | 36.0 | 27036 | 0.8190 | 0.8982 |
|
104 |
+
| 0.0 | 37.0 | 27787 | 0.8357 | 0.9032 |
|
105 |
+
| 0.0 | 38.0 | 28538 | 0.9401 | 0.9015 |
|
106 |
+
| 0.0 | 39.0 | 29289 | 0.7726 | 0.9115 |
|
107 |
+
| 0.0 | 40.0 | 30040 | 0.8975 | 0.8965 |
|
108 |
+
| 0.0 | 41.0 | 30791 | 0.8489 | 0.9065 |
|
109 |
+
| 0.0 | 42.0 | 31542 | 0.9519 | 0.8998 |
|
110 |
+
| 0.0 | 43.0 | 32293 | 0.9084 | 0.9032 |
|
111 |
+
| 0.0 | 44.0 | 33044 | 0.9097 | 0.9048 |
|
112 |
+
| 0.0 | 45.0 | 33795 | 0.9438 | 0.9098 |
|
113 |
+
| 0.0 | 46.0 | 34546 | 0.9461 | 0.9082 |
|
114 |
+
| 0.0 | 47.0 | 35297 | 0.9632 | 0.9048 |
|
115 |
+
| 0.0 | 48.0 | 36048 | 0.9598 | 0.9065 |
|
116 |
+
| 0.0 | 49.0 | 36799 | 0.9723 | 0.9048 |
|
117 |
+
| 0.0 | 50.0 | 37550 | 0.9751 | 0.9048 |
|
118 |
+
|
119 |
+
|
120 |
+
### Framework versions
|
121 |
+
|
122 |
+
- Transformers 4.32.1
|
123 |
+
- Pytorch 2.1.0+cu121
|
124 |
+
- Datasets 2.12.0
|
125 |
+
- Tokenizers 0.13.2
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1213785638
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65d6cd77f5050eba675b01467acac08517601497f53a2dc5e5c99a43f0ded62f
|
3 |
size 1213785638
|