--- license: apache-2.0 base_model: microsoft/beit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_beit_large_adamax_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9048414023372288 --- # smids_10x_beit_large_adamax_001_fold1 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9751 - Accuracy: 0.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3471 | 1.0 | 751 | 0.3720 | 0.8631 | | 0.2879 | 2.0 | 1502 | 0.4078 | 0.8364 | | 0.2355 | 3.0 | 2253 | 0.4002 | 0.8831 | | 0.2335 | 4.0 | 3004 | 0.2992 | 0.8831 | | 0.1816 | 5.0 | 3755 | 0.3290 | 0.8965 | | 0.1386 | 6.0 | 4506 | 0.3986 | 0.8898 | | 0.1637 | 7.0 | 5257 | 0.4542 | 0.8681 | | 0.0627 | 8.0 | 6008 | 0.4567 | 0.8965 | | 0.0985 | 9.0 | 6759 | 0.3926 | 0.9015 | | 0.1363 | 10.0 | 7510 | 0.4519 | 0.8848 | | 0.0463 | 11.0 | 8261 | 0.5853 | 0.8898 | | 0.023 | 12.0 | 9012 | 0.5711 | 0.8865 | | 0.0292 | 13.0 | 9763 | 0.5829 | 0.8932 | | 0.0137 | 14.0 | 10514 | 0.5739 | 0.8965 | | 0.0034 | 15.0 | 11265 | 0.6922 | 0.8815 | | 0.0201 | 16.0 | 12016 | 0.6833 | 0.8948 | | 0.0068 | 17.0 | 12767 | 0.7845 | 0.8898 | | 0.0084 | 18.0 | 13518 | 0.6851 | 0.8781 | | 0.0033 | 19.0 | 14269 | 0.6219 | 0.8998 | | 0.0023 | 20.0 | 15020 | 0.5986 | 0.8982 | | 0.0011 | 21.0 | 15771 | 0.6825 | 0.8965 | | 0.0011 | 22.0 | 16522 | 0.7971 | 0.8932 | | 0.027 | 23.0 | 17273 | 0.5546 | 0.9098 | | 0.0061 | 24.0 | 18024 | 0.6400 | 0.8932 | | 0.0001 | 25.0 | 18775 | 0.6875 | 0.8965 | | 0.0111 | 26.0 | 19526 | 0.7316 | 0.8965 | | 0.0029 | 27.0 | 20277 | 0.8142 | 0.8865 | | 0.0004 | 28.0 | 21028 | 0.7441 | 0.8915 | | 0.0043 | 29.0 | 21779 | 0.7052 | 0.8965 | | 0.0 | 30.0 | 22530 | 0.7049 | 0.9048 | | 0.0 | 31.0 | 23281 | 0.8253 | 0.9149 | | 0.0005 | 32.0 | 24032 | 0.6696 | 0.9065 | | 0.0001 | 33.0 | 24783 | 0.8050 | 0.9065 | | 0.0 | 34.0 | 25534 | 0.8833 | 0.9015 | | 0.0 | 35.0 | 26285 | 0.8344 | 0.9032 | | 0.0 | 36.0 | 27036 | 0.8190 | 0.8982 | | 0.0 | 37.0 | 27787 | 0.8357 | 0.9032 | | 0.0 | 38.0 | 28538 | 0.9401 | 0.9015 | | 0.0 | 39.0 | 29289 | 0.7726 | 0.9115 | | 0.0 | 40.0 | 30040 | 0.8975 | 0.8965 | | 0.0 | 41.0 | 30791 | 0.8489 | 0.9065 | | 0.0 | 42.0 | 31542 | 0.9519 | 0.8998 | | 0.0 | 43.0 | 32293 | 0.9084 | 0.9032 | | 0.0 | 44.0 | 33044 | 0.9097 | 0.9048 | | 0.0 | 45.0 | 33795 | 0.9438 | 0.9098 | | 0.0 | 46.0 | 34546 | 0.9461 | 0.9082 | | 0.0 | 47.0 | 35297 | 0.9632 | 0.9048 | | 0.0 | 48.0 | 36048 | 0.9598 | 0.9065 | | 0.0 | 49.0 | 36799 | 0.9723 | 0.9048 | | 0.0 | 50.0 | 37550 | 0.9751 | 0.9048 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2