File size: 4,813 Bytes
3b5505a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_rms_00001_fold4
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8583333333333333
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smids_1x_deit_tiny_rms_00001_fold4

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2549
- Accuracy: 0.8583

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4697        | 1.0   | 75   | 0.4183          | 0.8233   |
| 0.3312        | 2.0   | 150  | 0.3681          | 0.8533   |
| 0.2321        | 3.0   | 225  | 0.4033          | 0.8517   |
| 0.1334        | 4.0   | 300  | 0.3968          | 0.8617   |
| 0.1233        | 5.0   | 375  | 0.4520          | 0.8567   |
| 0.0584        | 6.0   | 450  | 0.5293          | 0.8467   |
| 0.0835        | 7.0   | 525  | 0.5619          | 0.8533   |
| 0.0113        | 8.0   | 600  | 0.7080          | 0.8483   |
| 0.0326        | 9.0   | 675  | 0.7194          | 0.86     |
| 0.0108        | 10.0  | 750  | 0.7779          | 0.8583   |
| 0.0133        | 11.0  | 825  | 0.7881          | 0.8617   |
| 0.0052        | 12.0  | 900  | 0.8341          | 0.87     |
| 0.0272        | 13.0  | 975  | 0.8910          | 0.8617   |
| 0.0077        | 14.0  | 1050 | 0.9561          | 0.8433   |
| 0.0002        | 15.0  | 1125 | 0.9039          | 0.8617   |
| 0.0001        | 16.0  | 1200 | 0.9956          | 0.86     |
| 0.032         | 17.0  | 1275 | 0.9953          | 0.8667   |
| 0.018         | 18.0  | 1350 | 0.9816          | 0.8633   |
| 0.0282        | 19.0  | 1425 | 1.1776          | 0.8467   |
| 0.0002        | 20.0  | 1500 | 1.0796          | 0.8583   |
| 0.0001        | 21.0  | 1575 | 1.1308          | 0.8567   |
| 0.0001        | 22.0  | 1650 | 1.1869          | 0.8467   |
| 0.0001        | 23.0  | 1725 | 1.1953          | 0.86     |
| 0.0134        | 24.0  | 1800 | 1.1511          | 0.85     |
| 0.0197        | 25.0  | 1875 | 1.2279          | 0.8517   |
| 0.0           | 26.0  | 1950 | 1.2715          | 0.8483   |
| 0.0011        | 27.0  | 2025 | 1.2389          | 0.85     |
| 0.0034        | 28.0  | 2100 | 1.2470          | 0.85     |
| 0.0076        | 29.0  | 2175 | 1.1531          | 0.8617   |
| 0.0           | 30.0  | 2250 | 1.2325          | 0.85     |
| 0.0           | 31.0  | 2325 | 1.2009          | 0.8633   |
| 0.0           | 32.0  | 2400 | 1.2311          | 0.85     |
| 0.0           | 33.0  | 2475 | 1.2487          | 0.8583   |
| 0.0           | 34.0  | 2550 | 1.2363          | 0.8567   |
| 0.0           | 35.0  | 2625 | 1.2306          | 0.8567   |
| 0.0           | 36.0  | 2700 | 1.2366          | 0.86     |
| 0.0048        | 37.0  | 2775 | 1.2202          | 0.8567   |
| 0.0           | 38.0  | 2850 | 1.2263          | 0.86     |
| 0.0           | 39.0  | 2925 | 1.2319          | 0.8617   |
| 0.0           | 40.0  | 3000 | 1.2616          | 0.8533   |
| 0.0038        | 41.0  | 3075 | 1.2358          | 0.8583   |
| 0.0           | 42.0  | 3150 | 1.2473          | 0.8583   |
| 0.0           | 43.0  | 3225 | 1.2419          | 0.8567   |
| 0.0           | 44.0  | 3300 | 1.2543          | 0.8583   |
| 0.0           | 45.0  | 3375 | 1.2531          | 0.8567   |
| 0.0           | 46.0  | 3450 | 1.2531          | 0.8583   |
| 0.0           | 47.0  | 3525 | 1.2531          | 0.8583   |
| 0.0           | 48.0  | 3600 | 1.2543          | 0.8583   |
| 0.0           | 49.0  | 3675 | 1.2544          | 0.8583   |
| 0.0           | 50.0  | 3750 | 1.2549          | 0.8583   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0