hkivancoral's picture
End of training
ccb24b7
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_rms_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8647746243739566

smids_1x_deit_tiny_rms_0001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0693
  • Accuracy: 0.8648

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7287 1.0 76 0.8533 0.6394
0.5852 2.0 152 0.6881 0.7195
0.3351 3.0 228 0.4986 0.7997
0.2896 4.0 304 0.4784 0.8280
0.1989 5.0 380 0.4421 0.8664
0.1697 6.0 456 0.5180 0.8381
0.1375 7.0 532 0.6205 0.8331
0.099 8.0 608 0.5628 0.8631
0.0915 9.0 684 0.7872 0.8464
0.0302 10.0 760 0.6523 0.8748
0.067 11.0 836 0.7797 0.8447
0.0423 12.0 912 0.7040 0.8548
0.0283 13.0 988 0.7674 0.8631
0.0338 14.0 1064 0.7877 0.8564
0.0931 15.0 1140 0.9177 0.8381
0.0232 16.0 1216 0.9119 0.8531
0.0145 17.0 1292 0.9967 0.8514
0.0553 18.0 1368 0.9035 0.8531
0.0024 19.0 1444 0.9160 0.8631
0.0523 20.0 1520 0.8356 0.8648
0.033 21.0 1596 1.0628 0.8531
0.0448 22.0 1672 0.8647 0.8664
0.0183 23.0 1748 1.0897 0.8481
0.0002 24.0 1824 1.0415 0.8431
0.0163 25.0 1900 0.9932 0.8581
0.0047 26.0 1976 1.1496 0.8514
0.0072 27.0 2052 1.0645 0.8531
0.0133 28.0 2128 1.1427 0.8297
0.0062 29.0 2204 1.0607 0.8531
0.0 30.0 2280 0.9174 0.8715
0.0155 31.0 2356 1.0165 0.8598
0.0239 32.0 2432 1.0075 0.8698
0.0001 33.0 2508 1.0034 0.8731
0.0 34.0 2584 1.0346 0.8598
0.0119 35.0 2660 0.9934 0.8631
0.0037 36.0 2736 1.0215 0.8614
0.0079 37.0 2812 0.9915 0.8698
0.0 38.0 2888 1.0008 0.8698
0.0032 39.0 2964 1.0184 0.8731
0.0 40.0 3040 1.0021 0.8664
0.0033 41.0 3116 1.0395 0.8698
0.0 42.0 3192 1.0443 0.8664
0.0049 43.0 3268 1.0447 0.8681
0.0 44.0 3344 1.0507 0.8664
0.0 45.0 3420 1.0520 0.8648
0.0 46.0 3496 1.0585 0.8648
0.0 47.0 3572 1.0642 0.8648
0.0026 48.0 3648 1.0682 0.8648
0.0 49.0 3724 1.0688 0.8648
0.0 50.0 3800 1.0693 0.8648

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0