hkivancoral's picture
End of training
2225292
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_rms_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7479131886477463

smids_1x_deit_tiny_rms_001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2760
  • Accuracy: 0.7479

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1876 1.0 76 1.3425 0.3356
1.1463 2.0 152 1.2111 0.3356
1.0954 3.0 228 1.0384 0.4908
0.9283 4.0 304 1.3266 0.3422
0.8828 5.0 380 0.8561 0.5609
0.9197 6.0 456 0.8658 0.5326
0.8712 7.0 532 0.8805 0.5242
0.8491 8.0 608 0.9865 0.5476
0.8029 9.0 684 0.8775 0.5609
0.7757 10.0 760 1.7456 0.4307
0.873 11.0 836 0.8686 0.5058
0.9608 12.0 912 0.7919 0.5893
0.7695 13.0 988 0.8046 0.5659
0.7753 14.0 1064 0.7823 0.5927
0.7166 15.0 1140 0.8383 0.5576
0.7186 16.0 1216 0.7798 0.6444
0.7445 17.0 1292 0.7722 0.6427
0.6602 18.0 1368 0.7838 0.6227
0.7252 19.0 1444 0.6881 0.6945
0.8232 20.0 1520 0.7249 0.6845
0.6331 21.0 1596 0.7098 0.6795
0.5883 22.0 1672 0.7178 0.6711
0.6215 23.0 1748 0.7089 0.6912
0.6142 24.0 1824 0.6619 0.7062
0.5494 25.0 1900 0.6904 0.7212
0.6135 26.0 1976 0.6508 0.7129
0.5009 27.0 2052 0.6608 0.7212
0.587 28.0 2128 0.7282 0.7112
0.4496 29.0 2204 0.6988 0.7095
0.4737 30.0 2280 0.7982 0.6728
0.5606 31.0 2356 0.7102 0.7062
0.5118 32.0 2432 0.6558 0.7479
0.4696 33.0 2508 0.9166 0.6978
0.5104 34.0 2584 0.7689 0.6995
0.4795 35.0 2660 0.6827 0.7362
0.432 36.0 2736 0.7633 0.7129
0.4887 37.0 2812 0.7070 0.7162
0.4102 38.0 2888 0.7227 0.7396
0.3613 39.0 2964 0.7184 0.7329
0.3288 40.0 3040 0.7694 0.7379
0.3339 41.0 3116 0.7145 0.7429
0.242 42.0 3192 0.8275 0.7429
0.3299 43.0 3268 0.8614 0.7446
0.2932 44.0 3344 0.9021 0.7362
0.2403 45.0 3420 0.9785 0.7479
0.1305 46.0 3496 1.0696 0.7546
0.1845 47.0 3572 1.1023 0.7529
0.1407 48.0 3648 1.2188 0.7513
0.0723 49.0 3724 1.2702 0.7479
0.0363 50.0 3800 1.2760 0.7479

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0