hkivancoral's picture
End of training
b56e0ec
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.855

smids_1x_deit_tiny_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3402
  • Accuracy: 0.855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0561 1.0 75 1.0620 0.43
0.937 2.0 150 0.9594 0.51
0.8543 3.0 225 0.8655 0.62
0.8165 4.0 300 0.7890 0.6667
0.7134 5.0 375 0.7178 0.7017
0.7528 6.0 450 0.6594 0.715
0.6452 7.0 525 0.6058 0.75
0.597 8.0 600 0.5655 0.7717
0.5415 9.0 675 0.5324 0.7867
0.5088 10.0 750 0.5114 0.8117
0.5609 11.0 825 0.4871 0.8067
0.4661 12.0 900 0.4691 0.8117
0.4495 13.0 975 0.4552 0.8217
0.4956 14.0 1050 0.4435 0.8217
0.4383 15.0 1125 0.4330 0.83
0.3764 16.0 1200 0.4243 0.8317
0.4263 17.0 1275 0.4146 0.83
0.39 18.0 1350 0.4087 0.83
0.4056 19.0 1425 0.4021 0.8367
0.4427 20.0 1500 0.3960 0.835
0.3559 21.0 1575 0.3906 0.84
0.3313 22.0 1650 0.3861 0.8383
0.3291 23.0 1725 0.3822 0.8383
0.3377 24.0 1800 0.3784 0.8383
0.3287 25.0 1875 0.3755 0.8433
0.3695 26.0 1950 0.3722 0.8467
0.3651 27.0 2025 0.3680 0.845
0.3421 28.0 2100 0.3650 0.845
0.3095 29.0 2175 0.3617 0.85
0.3232 30.0 2250 0.3592 0.8467
0.2955 31.0 2325 0.3570 0.8467
0.273 32.0 2400 0.3554 0.8483
0.3566 33.0 2475 0.3529 0.8467
0.3239 34.0 2550 0.3508 0.85
0.3231 35.0 2625 0.3501 0.8517
0.2755 36.0 2700 0.3491 0.8517
0.2727 37.0 2775 0.3485 0.8433
0.2931 38.0 2850 0.3470 0.845
0.2624 39.0 2925 0.3453 0.85
0.3211 40.0 3000 0.3440 0.855
0.2988 41.0 3075 0.3437 0.855
0.3248 42.0 3150 0.3424 0.855
0.3151 43.0 3225 0.3419 0.855
0.3064 44.0 3300 0.3415 0.8533
0.2827 45.0 3375 0.3410 0.8533
0.2824 46.0 3450 0.3410 0.8517
0.2636 47.0 3525 0.3406 0.8567
0.275 48.0 3600 0.3403 0.8567
0.2811 49.0 3675 0.3402 0.8567
0.2711 50.0 3750 0.3402 0.855

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0