metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_sgd_001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.855
smids_1x_deit_tiny_sgd_001_fold5
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3402
- Accuracy: 0.855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0561 | 1.0 | 75 | 1.0620 | 0.43 |
0.937 | 2.0 | 150 | 0.9594 | 0.51 |
0.8543 | 3.0 | 225 | 0.8655 | 0.62 |
0.8165 | 4.0 | 300 | 0.7890 | 0.6667 |
0.7134 | 5.0 | 375 | 0.7178 | 0.7017 |
0.7528 | 6.0 | 450 | 0.6594 | 0.715 |
0.6452 | 7.0 | 525 | 0.6058 | 0.75 |
0.597 | 8.0 | 600 | 0.5655 | 0.7717 |
0.5415 | 9.0 | 675 | 0.5324 | 0.7867 |
0.5088 | 10.0 | 750 | 0.5114 | 0.8117 |
0.5609 | 11.0 | 825 | 0.4871 | 0.8067 |
0.4661 | 12.0 | 900 | 0.4691 | 0.8117 |
0.4495 | 13.0 | 975 | 0.4552 | 0.8217 |
0.4956 | 14.0 | 1050 | 0.4435 | 0.8217 |
0.4383 | 15.0 | 1125 | 0.4330 | 0.83 |
0.3764 | 16.0 | 1200 | 0.4243 | 0.8317 |
0.4263 | 17.0 | 1275 | 0.4146 | 0.83 |
0.39 | 18.0 | 1350 | 0.4087 | 0.83 |
0.4056 | 19.0 | 1425 | 0.4021 | 0.8367 |
0.4427 | 20.0 | 1500 | 0.3960 | 0.835 |
0.3559 | 21.0 | 1575 | 0.3906 | 0.84 |
0.3313 | 22.0 | 1650 | 0.3861 | 0.8383 |
0.3291 | 23.0 | 1725 | 0.3822 | 0.8383 |
0.3377 | 24.0 | 1800 | 0.3784 | 0.8383 |
0.3287 | 25.0 | 1875 | 0.3755 | 0.8433 |
0.3695 | 26.0 | 1950 | 0.3722 | 0.8467 |
0.3651 | 27.0 | 2025 | 0.3680 | 0.845 |
0.3421 | 28.0 | 2100 | 0.3650 | 0.845 |
0.3095 | 29.0 | 2175 | 0.3617 | 0.85 |
0.3232 | 30.0 | 2250 | 0.3592 | 0.8467 |
0.2955 | 31.0 | 2325 | 0.3570 | 0.8467 |
0.273 | 32.0 | 2400 | 0.3554 | 0.8483 |
0.3566 | 33.0 | 2475 | 0.3529 | 0.8467 |
0.3239 | 34.0 | 2550 | 0.3508 | 0.85 |
0.3231 | 35.0 | 2625 | 0.3501 | 0.8517 |
0.2755 | 36.0 | 2700 | 0.3491 | 0.8517 |
0.2727 | 37.0 | 2775 | 0.3485 | 0.8433 |
0.2931 | 38.0 | 2850 | 0.3470 | 0.845 |
0.2624 | 39.0 | 2925 | 0.3453 | 0.85 |
0.3211 | 40.0 | 3000 | 0.3440 | 0.855 |
0.2988 | 41.0 | 3075 | 0.3437 | 0.855 |
0.3248 | 42.0 | 3150 | 0.3424 | 0.855 |
0.3151 | 43.0 | 3225 | 0.3419 | 0.855 |
0.3064 | 44.0 | 3300 | 0.3415 | 0.8533 |
0.2827 | 45.0 | 3375 | 0.3410 | 0.8533 |
0.2824 | 46.0 | 3450 | 0.3410 | 0.8517 |
0.2636 | 47.0 | 3525 | 0.3406 | 0.8567 |
0.275 | 48.0 | 3600 | 0.3403 | 0.8567 |
0.2811 | 49.0 | 3675 | 0.3402 | 0.8567 |
0.2711 | 50.0 | 3750 | 0.3402 | 0.855 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0