--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_base_sgd_00001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.43333333333333335 --- # smids_3x_deit_base_sgd_00001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0826 - Accuracy: 0.4333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1201 | 1.0 | 225 | 1.1112 | 0.3333 | | 1.1056 | 2.0 | 450 | 1.1099 | 0.34 | | 1.0987 | 3.0 | 675 | 1.1086 | 0.3433 | | 1.1099 | 4.0 | 900 | 1.1074 | 0.355 | | 1.0994 | 5.0 | 1125 | 1.1062 | 0.3517 | | 1.106 | 6.0 | 1350 | 1.1051 | 0.3583 | | 1.1031 | 7.0 | 1575 | 1.1040 | 0.3633 | | 1.1065 | 8.0 | 1800 | 1.1029 | 0.37 | | 1.0902 | 9.0 | 2025 | 1.1018 | 0.3683 | | 1.0803 | 10.0 | 2250 | 1.1008 | 0.3717 | | 1.0894 | 11.0 | 2475 | 1.0998 | 0.375 | | 1.095 | 12.0 | 2700 | 1.0989 | 0.3817 | | 1.0882 | 13.0 | 2925 | 1.0979 | 0.3867 | | 1.0908 | 14.0 | 3150 | 1.0971 | 0.39 | | 1.1022 | 15.0 | 3375 | 1.0962 | 0.3917 | | 1.0922 | 16.0 | 3600 | 1.0954 | 0.395 | | 1.0943 | 17.0 | 3825 | 1.0946 | 0.3967 | | 1.0851 | 18.0 | 4050 | 1.0938 | 0.4017 | | 1.0874 | 19.0 | 4275 | 1.0931 | 0.405 | | 1.0966 | 20.0 | 4500 | 1.0924 | 0.4083 | | 1.0868 | 21.0 | 4725 | 1.0917 | 0.4083 | | 1.0765 | 22.0 | 4950 | 1.0910 | 0.4083 | | 1.0918 | 23.0 | 5175 | 1.0904 | 0.41 | | 1.0777 | 24.0 | 5400 | 1.0898 | 0.4183 | | 1.0939 | 25.0 | 5625 | 1.0892 | 0.42 | | 1.0798 | 26.0 | 5850 | 1.0886 | 0.4217 | | 1.0858 | 27.0 | 6075 | 1.0881 | 0.425 | | 1.061 | 28.0 | 6300 | 1.0876 | 0.4233 | | 1.083 | 29.0 | 6525 | 1.0871 | 0.425 | | 1.0868 | 30.0 | 6750 | 1.0867 | 0.425 | | 1.0886 | 31.0 | 6975 | 1.0862 | 0.4267 | | 1.0841 | 32.0 | 7200 | 1.0858 | 0.4267 | | 1.0853 | 33.0 | 7425 | 1.0855 | 0.4283 | | 1.0704 | 34.0 | 7650 | 1.0851 | 0.4283 | | 1.0702 | 35.0 | 7875 | 1.0848 | 0.4267 | | 1.0848 | 36.0 | 8100 | 1.0845 | 0.4283 | | 1.0671 | 37.0 | 8325 | 1.0842 | 0.4283 | | 1.0578 | 38.0 | 8550 | 1.0840 | 0.43 | | 1.0817 | 39.0 | 8775 | 1.0837 | 0.43 | | 1.0866 | 40.0 | 9000 | 1.0835 | 0.4317 | | 1.083 | 41.0 | 9225 | 1.0833 | 0.4333 | | 1.0747 | 42.0 | 9450 | 1.0832 | 0.4333 | | 1.0816 | 43.0 | 9675 | 1.0830 | 0.4333 | | 1.0657 | 44.0 | 9900 | 1.0829 | 0.4333 | | 1.0619 | 45.0 | 10125 | 1.0828 | 0.4333 | | 1.067 | 46.0 | 10350 | 1.0827 | 0.4333 | | 1.0593 | 47.0 | 10575 | 1.0827 | 0.4333 | | 1.0587 | 48.0 | 10800 | 1.0826 | 0.4333 | | 1.0675 | 49.0 | 11025 | 1.0826 | 0.4333 | | 1.0632 | 50.0 | 11250 | 1.0826 | 0.4333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2