--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_5x_deit_tiny_sgd_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8216666666666667 --- # smids_5x_deit_tiny_sgd_0001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4623 - Accuracy: 0.8217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1763 | 1.0 | 375 | 1.1547 | 0.3917 | | 1.0966 | 2.0 | 750 | 1.0897 | 0.42 | | 1.0223 | 3.0 | 1125 | 1.0444 | 0.46 | | 0.9886 | 4.0 | 1500 | 1.0052 | 0.4917 | | 0.9546 | 5.0 | 1875 | 0.9693 | 0.515 | | 0.932 | 6.0 | 2250 | 0.9344 | 0.54 | | 0.8619 | 7.0 | 2625 | 0.9000 | 0.57 | | 0.857 | 8.0 | 3000 | 0.8647 | 0.5967 | | 0.8079 | 9.0 | 3375 | 0.8304 | 0.62 | | 0.7619 | 10.0 | 3750 | 0.7976 | 0.645 | | 0.7316 | 11.0 | 4125 | 0.7657 | 0.665 | | 0.6666 | 12.0 | 4500 | 0.7355 | 0.68 | | 0.6961 | 13.0 | 4875 | 0.7078 | 0.69 | | 0.6607 | 14.0 | 5250 | 0.6819 | 0.7083 | | 0.6448 | 15.0 | 5625 | 0.6579 | 0.725 | | 0.6031 | 16.0 | 6000 | 0.6371 | 0.7333 | | 0.633 | 17.0 | 6375 | 0.6195 | 0.7433 | | 0.6177 | 18.0 | 6750 | 0.6022 | 0.7533 | | 0.5854 | 19.0 | 7125 | 0.5875 | 0.765 | | 0.5213 | 20.0 | 7500 | 0.5748 | 0.77 | | 0.5296 | 21.0 | 7875 | 0.5628 | 0.7833 | | 0.5226 | 22.0 | 8250 | 0.5527 | 0.7917 | | 0.5777 | 23.0 | 8625 | 0.5439 | 0.795 | | 0.5616 | 24.0 | 9000 | 0.5354 | 0.8017 | | 0.5254 | 25.0 | 9375 | 0.5279 | 0.8067 | | 0.5443 | 26.0 | 9750 | 0.5213 | 0.8067 | | 0.5349 | 27.0 | 10125 | 0.5152 | 0.8133 | | 0.5476 | 28.0 | 10500 | 0.5090 | 0.8133 | | 0.5198 | 29.0 | 10875 | 0.5041 | 0.815 | | 0.4665 | 30.0 | 11250 | 0.4997 | 0.8167 | | 0.5013 | 31.0 | 11625 | 0.4955 | 0.8167 | | 0.5242 | 32.0 | 12000 | 0.4917 | 0.8167 | | 0.5162 | 33.0 | 12375 | 0.4881 | 0.8167 | | 0.5094 | 34.0 | 12750 | 0.4847 | 0.815 | | 0.4537 | 35.0 | 13125 | 0.4817 | 0.8167 | | 0.4056 | 36.0 | 13500 | 0.4788 | 0.8167 | | 0.4566 | 37.0 | 13875 | 0.4763 | 0.8167 | | 0.4864 | 38.0 | 14250 | 0.4740 | 0.8183 | | 0.4572 | 39.0 | 14625 | 0.4721 | 0.82 | | 0.5272 | 40.0 | 15000 | 0.4702 | 0.82 | | 0.4662 | 41.0 | 15375 | 0.4685 | 0.82 | | 0.4598 | 42.0 | 15750 | 0.4671 | 0.82 | | 0.4764 | 43.0 | 16125 | 0.4660 | 0.82 | | 0.4497 | 44.0 | 16500 | 0.4650 | 0.82 | | 0.4734 | 45.0 | 16875 | 0.4641 | 0.82 | | 0.4953 | 46.0 | 17250 | 0.4634 | 0.82 | | 0.4817 | 47.0 | 17625 | 0.4629 | 0.8217 | | 0.4691 | 48.0 | 18000 | 0.4625 | 0.8217 | | 0.4502 | 49.0 | 18375 | 0.4623 | 0.8217 | | 0.4257 | 50.0 | 18750 | 0.4623 | 0.8217 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2