Upload ./training.log with huggingface_hub
Browse files- training.log +511 -0
training.log
ADDED
@@ -0,0 +1,511 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 21:04:58,060 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 21:04:58,061 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-23 21:04:58,061 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
317 |
+
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-23 21:04:58,061 Train: 3575 sentences
|
319 |
+
2023-10-23 21:04:58,061 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-23 21:04:58,061 Training Params:
|
322 |
+
2023-10-23 21:04:58,061 - learning_rate: "3e-05"
|
323 |
+
2023-10-23 21:04:58,061 - mini_batch_size: "8"
|
324 |
+
2023-10-23 21:04:58,061 - max_epochs: "10"
|
325 |
+
2023-10-23 21:04:58,061 - shuffle: "True"
|
326 |
+
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-23 21:04:58,061 Plugins:
|
328 |
+
2023-10-23 21:04:58,061 - TensorboardLogger
|
329 |
+
2023-10-23 21:04:58,061 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-23 21:04:58,061 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-23 21:04:58,061 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-23 21:04:58,062 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-23 21:04:58,062 Computation:
|
335 |
+
2023-10-23 21:04:58,062 - compute on device: cuda:0
|
336 |
+
2023-10-23 21:04:58,062 - embedding storage: none
|
337 |
+
2023-10-23 21:04:58,062 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-23 21:04:58,062 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
|
339 |
+
2023-10-23 21:04:58,062 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-23 21:04:58,062 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-23 21:04:58,062 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-23 21:05:01,858 epoch 1 - iter 44/447 - loss 2.77674307 - time (sec): 3.80 - samples/sec: 2068.88 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-23 21:05:05,973 epoch 1 - iter 88/447 - loss 1.75956664 - time (sec): 7.91 - samples/sec: 2088.59 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-23 21:05:10,065 epoch 1 - iter 132/447 - loss 1.30302502 - time (sec): 12.00 - samples/sec: 2082.97 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-23 21:05:14,086 epoch 1 - iter 176/447 - loss 1.08268102 - time (sec): 16.02 - samples/sec: 2078.90 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-23 21:05:17,972 epoch 1 - iter 220/447 - loss 0.93560897 - time (sec): 19.91 - samples/sec: 2103.90 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-23 21:05:21,763 epoch 1 - iter 264/447 - loss 0.83394592 - time (sec): 23.70 - samples/sec: 2104.11 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-23 21:05:25,684 epoch 1 - iter 308/447 - loss 0.75226450 - time (sec): 27.62 - samples/sec: 2106.94 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-23 21:05:29,651 epoch 1 - iter 352/447 - loss 0.68133343 - time (sec): 31.59 - samples/sec: 2108.95 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-23 21:05:34,085 epoch 1 - iter 396/447 - loss 0.62684172 - time (sec): 36.02 - samples/sec: 2124.23 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-23 21:05:37,891 epoch 1 - iter 440/447 - loss 0.58441638 - time (sec): 39.83 - samples/sec: 2137.74 - lr: 0.000029 - momentum: 0.000000
|
352 |
+
2023-10-23 21:05:38,506 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-23 21:05:38,506 EPOCH 1 done: loss 0.5780 - lr: 0.000029
|
354 |
+
2023-10-23 21:05:43,315 DEV : loss 0.15914756059646606 - f1-score (micro avg) 0.5805
|
355 |
+
2023-10-23 21:05:43,335 saving best model
|
356 |
+
2023-10-23 21:05:43,804 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-23 21:05:47,532 epoch 2 - iter 44/447 - loss 0.17247700 - time (sec): 3.73 - samples/sec: 2206.20 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-23 21:05:51,556 epoch 2 - iter 88/447 - loss 0.15210658 - time (sec): 7.75 - samples/sec: 2170.56 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-23 21:05:55,638 epoch 2 - iter 132/447 - loss 0.14415904 - time (sec): 11.83 - samples/sec: 2166.91 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-23 21:05:59,766 epoch 2 - iter 176/447 - loss 0.14348377 - time (sec): 15.96 - samples/sec: 2153.80 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-23 21:06:03,542 epoch 2 - iter 220/447 - loss 0.13706169 - time (sec): 19.74 - samples/sec: 2132.36 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-23 21:06:07,684 epoch 2 - iter 264/447 - loss 0.13827372 - time (sec): 23.88 - samples/sec: 2135.49 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-23 21:06:11,700 epoch 2 - iter 308/447 - loss 0.13580790 - time (sec): 27.90 - samples/sec: 2140.60 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-23 21:06:15,332 epoch 2 - iter 352/447 - loss 0.13583544 - time (sec): 31.53 - samples/sec: 2145.24 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-23 21:06:19,814 epoch 2 - iter 396/447 - loss 0.13680668 - time (sec): 36.01 - samples/sec: 2139.14 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-23 21:06:23,630 epoch 2 - iter 440/447 - loss 0.13356993 - time (sec): 39.83 - samples/sec: 2137.55 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-23 21:06:24,229 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-23 21:06:24,230 EPOCH 2 done: loss 0.1328 - lr: 0.000027
|
369 |
+
2023-10-23 21:06:30,708 DEV : loss 0.12941311299800873 - f1-score (micro avg) 0.7109
|
370 |
+
2023-10-23 21:06:30,728 saving best model
|
371 |
+
2023-10-23 21:06:31,322 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-23 21:06:35,398 epoch 3 - iter 44/447 - loss 0.05897943 - time (sec): 4.07 - samples/sec: 2144.85 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-23 21:06:39,480 epoch 3 - iter 88/447 - loss 0.07267667 - time (sec): 8.16 - samples/sec: 2139.98 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-23 21:06:43,614 epoch 3 - iter 132/447 - loss 0.07124643 - time (sec): 12.29 - samples/sec: 2163.33 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-23 21:06:47,536 epoch 3 - iter 176/447 - loss 0.06874515 - time (sec): 16.21 - samples/sec: 2126.51 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-23 21:06:51,418 epoch 3 - iter 220/447 - loss 0.06845317 - time (sec): 20.10 - samples/sec: 2144.00 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-23 21:06:55,177 epoch 3 - iter 264/447 - loss 0.06741457 - time (sec): 23.85 - samples/sec: 2150.15 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-23 21:06:59,046 epoch 3 - iter 308/447 - loss 0.06763183 - time (sec): 27.72 - samples/sec: 2142.44 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-23 21:07:03,214 epoch 3 - iter 352/447 - loss 0.06611837 - time (sec): 31.89 - samples/sec: 2146.71 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-23 21:07:07,031 epoch 3 - iter 396/447 - loss 0.06604370 - time (sec): 35.71 - samples/sec: 2149.25 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-23 21:07:11,156 epoch 3 - iter 440/447 - loss 0.06746680 - time (sec): 39.83 - samples/sec: 2134.13 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-23 21:07:11,816 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-23 21:07:11,816 EPOCH 3 done: loss 0.0677 - lr: 0.000023
|
384 |
+
2023-10-23 21:07:18,319 DEV : loss 0.13155309855937958 - f1-score (micro avg) 0.7518
|
385 |
+
2023-10-23 21:07:18,339 saving best model
|
386 |
+
2023-10-23 21:07:18,912 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-23 21:07:22,645 epoch 4 - iter 44/447 - loss 0.04956695 - time (sec): 3.73 - samples/sec: 2133.43 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-23 21:07:26,708 epoch 4 - iter 88/447 - loss 0.04093136 - time (sec): 7.79 - samples/sec: 2113.74 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-23 21:07:30,759 epoch 4 - iter 132/447 - loss 0.03912973 - time (sec): 11.85 - samples/sec: 2133.26 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-23 21:07:34,940 epoch 4 - iter 176/447 - loss 0.03954112 - time (sec): 16.03 - samples/sec: 2116.49 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-23 21:07:39,131 epoch 4 - iter 220/447 - loss 0.03912372 - time (sec): 20.22 - samples/sec: 2109.00 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-23 21:07:43,162 epoch 4 - iter 264/447 - loss 0.04029854 - time (sec): 24.25 - samples/sec: 2116.55 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-23 21:07:47,407 epoch 4 - iter 308/447 - loss 0.04017848 - time (sec): 28.49 - samples/sec: 2117.43 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-23 21:07:51,304 epoch 4 - iter 352/447 - loss 0.03995350 - time (sec): 32.39 - samples/sec: 2121.72 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-23 21:07:55,232 epoch 4 - iter 396/447 - loss 0.04119580 - time (sec): 36.32 - samples/sec: 2122.18 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-23 21:07:59,018 epoch 4 - iter 440/447 - loss 0.04224669 - time (sec): 40.10 - samples/sec: 2126.79 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-23 21:07:59,609 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-23 21:07:59,609 EPOCH 4 done: loss 0.0431 - lr: 0.000020
|
399 |
+
2023-10-23 21:08:06,099 DEV : loss 0.17578744888305664 - f1-score (micro avg) 0.764
|
400 |
+
2023-10-23 21:08:06,120 saving best model
|
401 |
+
2023-10-23 21:08:06,714 ----------------------------------------------------------------------------------------------------
|
402 |
+
2023-10-23 21:08:10,724 epoch 5 - iter 44/447 - loss 0.03173418 - time (sec): 4.01 - samples/sec: 2167.42 - lr: 0.000020 - momentum: 0.000000
|
403 |
+
2023-10-23 21:08:14,826 epoch 5 - iter 88/447 - loss 0.03285878 - time (sec): 8.11 - samples/sec: 2075.18 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-23 21:08:18,587 epoch 5 - iter 132/447 - loss 0.03247897 - time (sec): 11.87 - samples/sec: 2091.33 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-23 21:08:22,960 epoch 5 - iter 176/447 - loss 0.03016416 - time (sec): 16.24 - samples/sec: 2100.92 - lr: 0.000019 - momentum: 0.000000
|
406 |
+
2023-10-23 21:08:26,816 epoch 5 - iter 220/447 - loss 0.02778420 - time (sec): 20.10 - samples/sec: 2102.65 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-23 21:08:30,624 epoch 5 - iter 264/447 - loss 0.02814833 - time (sec): 23.91 - samples/sec: 2103.17 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-23 21:08:35,077 epoch 5 - iter 308/447 - loss 0.02586079 - time (sec): 28.36 - samples/sec: 2110.52 - lr: 0.000018 - momentum: 0.000000
|
409 |
+
2023-10-23 21:08:39,022 epoch 5 - iter 352/447 - loss 0.02544490 - time (sec): 32.31 - samples/sec: 2113.41 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-23 21:08:42,951 epoch 5 - iter 396/447 - loss 0.02670970 - time (sec): 36.24 - samples/sec: 2126.29 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-23 21:08:46,739 epoch 5 - iter 440/447 - loss 0.02604997 - time (sec): 40.02 - samples/sec: 2134.99 - lr: 0.000017 - momentum: 0.000000
|
412 |
+
2023-10-23 21:08:47,301 ----------------------------------------------------------------------------------------------------
|
413 |
+
2023-10-23 21:08:47,301 EPOCH 5 done: loss 0.0260 - lr: 0.000017
|
414 |
+
2023-10-23 21:08:53,795 DEV : loss 0.19835765659809113 - f1-score (micro avg) 0.7738
|
415 |
+
2023-10-23 21:08:53,815 saving best model
|
416 |
+
2023-10-23 21:08:54,418 ----------------------------------------------------------------------------------------------------
|
417 |
+
2023-10-23 21:08:58,311 epoch 6 - iter 44/447 - loss 0.02184566 - time (sec): 3.89 - samples/sec: 2032.43 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-23 21:09:02,255 epoch 6 - iter 88/447 - loss 0.02189035 - time (sec): 7.84 - samples/sec: 2042.74 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-23 21:09:06,400 epoch 6 - iter 132/447 - loss 0.01858513 - time (sec): 11.98 - samples/sec: 2069.63 - lr: 0.000016 - momentum: 0.000000
|
420 |
+
2023-10-23 21:09:10,451 epoch 6 - iter 176/447 - loss 0.01839336 - time (sec): 16.03 - samples/sec: 2120.22 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-23 21:09:14,439 epoch 6 - iter 220/447 - loss 0.01779606 - time (sec): 20.02 - samples/sec: 2132.02 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-23 21:09:18,507 epoch 6 - iter 264/447 - loss 0.01809152 - time (sec): 24.09 - samples/sec: 2112.60 - lr: 0.000015 - momentum: 0.000000
|
423 |
+
2023-10-23 21:09:22,335 epoch 6 - iter 308/447 - loss 0.01799876 - time (sec): 27.92 - samples/sec: 2123.56 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-23 21:09:26,257 epoch 6 - iter 352/447 - loss 0.01963981 - time (sec): 31.84 - samples/sec: 2130.81 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-23 21:09:30,544 epoch 6 - iter 396/447 - loss 0.01948104 - time (sec): 36.13 - samples/sec: 2122.38 - lr: 0.000014 - momentum: 0.000000
|
426 |
+
2023-10-23 21:09:34,423 epoch 6 - iter 440/447 - loss 0.01934598 - time (sec): 40.00 - samples/sec: 2135.33 - lr: 0.000013 - momentum: 0.000000
|
427 |
+
2023-10-23 21:09:34,989 ----------------------------------------------------------------------------------------------------
|
428 |
+
2023-10-23 21:09:34,990 EPOCH 6 done: loss 0.0195 - lr: 0.000013
|
429 |
+
2023-10-23 21:09:41,480 DEV : loss 0.2243068516254425 - f1-score (micro avg) 0.7653
|
430 |
+
2023-10-23 21:09:41,500 ----------------------------------------------------------------------------------------------------
|
431 |
+
2023-10-23 21:09:45,224 epoch 7 - iter 44/447 - loss 0.00920856 - time (sec): 3.72 - samples/sec: 2231.28 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-23 21:09:49,298 epoch 7 - iter 88/447 - loss 0.00662161 - time (sec): 7.80 - samples/sec: 2168.79 - lr: 0.000013 - momentum: 0.000000
|
433 |
+
2023-10-23 21:09:53,791 epoch 7 - iter 132/447 - loss 0.00770613 - time (sec): 12.29 - samples/sec: 2141.83 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-23 21:09:57,731 epoch 7 - iter 176/447 - loss 0.00876968 - time (sec): 16.23 - samples/sec: 2139.89 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-23 21:10:01,668 epoch 7 - iter 220/447 - loss 0.01105371 - time (sec): 20.17 - samples/sec: 2133.73 - lr: 0.000012 - momentum: 0.000000
|
436 |
+
2023-10-23 21:10:05,750 epoch 7 - iter 264/447 - loss 0.01232071 - time (sec): 24.25 - samples/sec: 2134.11 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-23 21:10:09,797 epoch 7 - iter 308/447 - loss 0.01229655 - time (sec): 28.30 - samples/sec: 2129.39 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-23 21:10:13,591 epoch 7 - iter 352/447 - loss 0.01195873 - time (sec): 32.09 - samples/sec: 2131.21 - lr: 0.000011 - momentum: 0.000000
|
439 |
+
2023-10-23 21:10:17,520 epoch 7 - iter 396/447 - loss 0.01218580 - time (sec): 36.02 - samples/sec: 2138.12 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-23 21:10:21,420 epoch 7 - iter 440/447 - loss 0.01243524 - time (sec): 39.92 - samples/sec: 2141.02 - lr: 0.000010 - momentum: 0.000000
|
441 |
+
2023-10-23 21:10:21,970 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-23 21:10:21,971 EPOCH 7 done: loss 0.0123 - lr: 0.000010
|
443 |
+
2023-10-23 21:10:28,450 DEV : loss 0.23942111432552338 - f1-score (micro avg) 0.7782
|
444 |
+
2023-10-23 21:10:28,471 saving best model
|
445 |
+
2023-10-23 21:10:29,061 ----------------------------------------------------------------------------------------------------
|
446 |
+
2023-10-23 21:10:32,915 epoch 8 - iter 44/447 - loss 0.01227698 - time (sec): 3.85 - samples/sec: 2174.91 - lr: 0.000010 - momentum: 0.000000
|
447 |
+
2023-10-23 21:10:36,826 epoch 8 - iter 88/447 - loss 0.01241903 - time (sec): 7.76 - samples/sec: 2170.56 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-23 21:10:40,673 epoch 8 - iter 132/447 - loss 0.01170822 - time (sec): 11.61 - samples/sec: 2125.15 - lr: 0.000009 - momentum: 0.000000
|
449 |
+
2023-10-23 21:10:45,301 epoch 8 - iter 176/447 - loss 0.00886420 - time (sec): 16.24 - samples/sec: 2140.47 - lr: 0.000009 - momentum: 0.000000
|
450 |
+
2023-10-23 21:10:49,255 epoch 8 - iter 220/447 - loss 0.00834151 - time (sec): 20.19 - samples/sec: 2146.67 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-23 21:10:52,900 epoch 8 - iter 264/447 - loss 0.00734419 - time (sec): 23.84 - samples/sec: 2125.14 - lr: 0.000008 - momentum: 0.000000
|
452 |
+
2023-10-23 21:10:57,066 epoch 8 - iter 308/447 - loss 0.00699004 - time (sec): 28.00 - samples/sec: 2125.54 - lr: 0.000008 - momentum: 0.000000
|
453 |
+
2023-10-23 21:11:01,039 epoch 8 - iter 352/447 - loss 0.00726347 - time (sec): 31.98 - samples/sec: 2127.42 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-23 21:11:05,458 epoch 8 - iter 396/447 - loss 0.00762904 - time (sec): 36.40 - samples/sec: 2122.16 - lr: 0.000007 - momentum: 0.000000
|
455 |
+
2023-10-23 21:11:09,201 epoch 8 - iter 440/447 - loss 0.00722230 - time (sec): 40.14 - samples/sec: 2121.45 - lr: 0.000007 - momentum: 0.000000
|
456 |
+
2023-10-23 21:11:09,820 ----------------------------------------------------------------------------------------------------
|
457 |
+
2023-10-23 21:11:09,820 EPOCH 8 done: loss 0.0072 - lr: 0.000007
|
458 |
+
2023-10-23 21:11:16,024 DEV : loss 0.24051210284233093 - f1-score (micro avg) 0.7845
|
459 |
+
2023-10-23 21:11:16,045 saving best model
|
460 |
+
2023-10-23 21:11:16,944 ----------------------------------------------------------------------------------------------------
|
461 |
+
2023-10-23 21:11:20,570 epoch 9 - iter 44/447 - loss 0.00666362 - time (sec): 3.62 - samples/sec: 2217.26 - lr: 0.000006 - momentum: 0.000000
|
462 |
+
2023-10-23 21:11:24,590 epoch 9 - iter 88/447 - loss 0.00577915 - time (sec): 7.65 - samples/sec: 2129.85 - lr: 0.000006 - momentum: 0.000000
|
463 |
+
2023-10-23 21:11:28,832 epoch 9 - iter 132/447 - loss 0.00485046 - time (sec): 11.89 - samples/sec: 2118.85 - lr: 0.000006 - momentum: 0.000000
|
464 |
+
2023-10-23 21:11:32,648 epoch 9 - iter 176/447 - loss 0.00491996 - time (sec): 15.70 - samples/sec: 2142.21 - lr: 0.000005 - momentum: 0.000000
|
465 |
+
2023-10-23 21:11:36,618 epoch 9 - iter 220/447 - loss 0.00513214 - time (sec): 19.67 - samples/sec: 2151.50 - lr: 0.000005 - momentum: 0.000000
|
466 |
+
2023-10-23 21:11:40,891 epoch 9 - iter 264/447 - loss 0.00479915 - time (sec): 23.95 - samples/sec: 2148.31 - lr: 0.000005 - momentum: 0.000000
|
467 |
+
2023-10-23 21:11:45,144 epoch 9 - iter 308/447 - loss 0.00461094 - time (sec): 28.20 - samples/sec: 2147.40 - lr: 0.000004 - momentum: 0.000000
|
468 |
+
2023-10-23 21:11:48,902 epoch 9 - iter 352/447 - loss 0.00508793 - time (sec): 31.96 - samples/sec: 2144.23 - lr: 0.000004 - momentum: 0.000000
|
469 |
+
2023-10-23 21:11:52,648 epoch 9 - iter 396/447 - loss 0.00553986 - time (sec): 35.70 - samples/sec: 2147.82 - lr: 0.000004 - momentum: 0.000000
|
470 |
+
2023-10-23 21:11:56,680 epoch 9 - iter 440/447 - loss 0.00517049 - time (sec): 39.74 - samples/sec: 2149.08 - lr: 0.000003 - momentum: 0.000000
|
471 |
+
2023-10-23 21:11:57,308 ----------------------------------------------------------------------------------------------------
|
472 |
+
2023-10-23 21:11:57,309 EPOCH 9 done: loss 0.0051 - lr: 0.000003
|
473 |
+
2023-10-23 21:12:03,519 DEV : loss 0.2497478574514389 - f1-score (micro avg) 0.7909
|
474 |
+
2023-10-23 21:12:03,540 saving best model
|
475 |
+
2023-10-23 21:12:04,111 ----------------------------------------------------------------------------------------------------
|
476 |
+
2023-10-23 21:12:08,002 epoch 10 - iter 44/447 - loss 0.00252055 - time (sec): 3.89 - samples/sec: 2207.00 - lr: 0.000003 - momentum: 0.000000
|
477 |
+
2023-10-23 21:12:12,159 epoch 10 - iter 88/447 - loss 0.00205105 - time (sec): 8.05 - samples/sec: 2163.44 - lr: 0.000003 - momentum: 0.000000
|
478 |
+
2023-10-23 21:12:16,370 epoch 10 - iter 132/447 - loss 0.00162416 - time (sec): 12.26 - samples/sec: 2100.99 - lr: 0.000002 - momentum: 0.000000
|
479 |
+
2023-10-23 21:12:20,040 epoch 10 - iter 176/447 - loss 0.00314123 - time (sec): 15.93 - samples/sec: 2135.69 - lr: 0.000002 - momentum: 0.000000
|
480 |
+
2023-10-23 21:12:24,341 epoch 10 - iter 220/447 - loss 0.00360926 - time (sec): 20.23 - samples/sec: 2144.50 - lr: 0.000002 - momentum: 0.000000
|
481 |
+
2023-10-23 21:12:28,106 epoch 10 - iter 264/447 - loss 0.00340675 - time (sec): 23.99 - samples/sec: 2135.76 - lr: 0.000001 - momentum: 0.000000
|
482 |
+
2023-10-23 21:12:31,919 epoch 10 - iter 308/447 - loss 0.00353423 - time (sec): 27.81 - samples/sec: 2147.17 - lr: 0.000001 - momentum: 0.000000
|
483 |
+
2023-10-23 21:12:36,013 epoch 10 - iter 352/447 - loss 0.00314415 - time (sec): 31.90 - samples/sec: 2139.65 - lr: 0.000001 - momentum: 0.000000
|
484 |
+
2023-10-23 21:12:40,324 epoch 10 - iter 396/447 - loss 0.00312445 - time (sec): 36.21 - samples/sec: 2122.16 - lr: 0.000000 - momentum: 0.000000
|
485 |
+
2023-10-23 21:12:44,382 epoch 10 - iter 440/447 - loss 0.00304078 - time (sec): 40.27 - samples/sec: 2116.62 - lr: 0.000000 - momentum: 0.000000
|
486 |
+
2023-10-23 21:12:45,004 ----------------------------------------------------------------------------------------------------
|
487 |
+
2023-10-23 21:12:45,004 EPOCH 10 done: loss 0.0030 - lr: 0.000000
|
488 |
+
2023-10-23 21:12:51,224 DEV : loss 0.25497499108314514 - f1-score (micro avg) 0.7901
|
489 |
+
2023-10-23 21:12:51,722 ----------------------------------------------------------------------------------------------------
|
490 |
+
2023-10-23 21:12:51,723 Loading model from best epoch ...
|
491 |
+
2023-10-23 21:12:53,466 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
492 |
+
2023-10-23 21:12:58,280
|
493 |
+
Results:
|
494 |
+
- F-score (micro) 0.7524
|
495 |
+
- F-score (macro) 0.665
|
496 |
+
- Accuracy 0.6214
|
497 |
+
|
498 |
+
By class:
|
499 |
+
precision recall f1-score support
|
500 |
+
|
501 |
+
loc 0.8280 0.8641 0.8456 596
|
502 |
+
pers 0.7064 0.7658 0.7349 333
|
503 |
+
org 0.4706 0.4848 0.4776 132
|
504 |
+
prod 0.6071 0.5152 0.5574 66
|
505 |
+
time 0.7500 0.6735 0.7097 49
|
506 |
+
|
507 |
+
micro avg 0.7391 0.7662 0.7524 1176
|
508 |
+
macro avg 0.6724 0.6607 0.6650 1176
|
509 |
+
weighted avg 0.7378 0.7662 0.7511 1176
|
510 |
+
|
511 |
+
2023-10-23 21:12:58,280 ----------------------------------------------------------------------------------------------------
|