|
2023-10-24 10:02:59,640 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,641 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(64001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(1): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(2): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(3): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(4): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(5): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(6): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(7): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(8): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(9): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(10): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(11): BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=21, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-24 10:02:59,641 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,641 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences |
|
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator |
|
2023-10-24 10:02:59,641 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,641 Train: 5901 sentences |
|
2023-10-24 10:02:59,641 (train_with_dev=False, train_with_test=False) |
|
2023-10-24 10:02:59,641 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,641 Training Params: |
|
2023-10-24 10:02:59,641 - learning_rate: "3e-05" |
|
2023-10-24 10:02:59,641 - mini_batch_size: "8" |
|
2023-10-24 10:02:59,641 - max_epochs: "10" |
|
2023-10-24 10:02:59,641 - shuffle: "True" |
|
2023-10-24 10:02:59,641 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,641 Plugins: |
|
2023-10-24 10:02:59,641 - TensorboardLogger |
|
2023-10-24 10:02:59,642 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-24 10:02:59,642 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,642 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-24 10:02:59,642 - metric: "('micro avg', 'f1-score')" |
|
2023-10-24 10:02:59,642 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,642 Computation: |
|
2023-10-24 10:02:59,642 - compute on device: cuda:0 |
|
2023-10-24 10:02:59,642 - embedding storage: none |
|
2023-10-24 10:02:59,642 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,642 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2" |
|
2023-10-24 10:02:59,642 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,642 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:02:59,642 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-24 10:03:05,895 epoch 1 - iter 73/738 - loss 2.42550890 - time (sec): 6.25 - samples/sec: 2471.21 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-24 10:03:12,507 epoch 1 - iter 146/738 - loss 1.50600625 - time (sec): 12.86 - samples/sec: 2418.68 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-24 10:03:19,533 epoch 1 - iter 219/738 - loss 1.12767070 - time (sec): 19.89 - samples/sec: 2397.52 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-24 10:03:26,301 epoch 1 - iter 292/738 - loss 0.93406611 - time (sec): 26.66 - samples/sec: 2376.48 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-24 10:03:33,259 epoch 1 - iter 365/738 - loss 0.80134282 - time (sec): 33.62 - samples/sec: 2375.26 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-24 10:03:39,853 epoch 1 - iter 438/738 - loss 0.71149145 - time (sec): 40.21 - samples/sec: 2361.86 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-24 10:03:47,300 epoch 1 - iter 511/738 - loss 0.63540461 - time (sec): 47.66 - samples/sec: 2356.51 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-24 10:03:53,988 epoch 1 - iter 584/738 - loss 0.57914697 - time (sec): 54.35 - samples/sec: 2358.43 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-24 10:04:01,580 epoch 1 - iter 657/738 - loss 0.53176914 - time (sec): 61.94 - samples/sec: 2360.80 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-24 10:04:09,449 epoch 1 - iter 730/738 - loss 0.49158401 - time (sec): 69.81 - samples/sec: 2357.65 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-24 10:04:10,192 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:04:10,192 EPOCH 1 done: loss 0.4878 - lr: 0.000030 |
|
2023-10-24 10:04:16,415 DEV : loss 0.10594037920236588 - f1-score (micro avg) 0.7283 |
|
2023-10-24 10:04:16,436 saving best model |
|
2023-10-24 10:04:16,986 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:04:23,926 epoch 2 - iter 73/738 - loss 0.14091494 - time (sec): 6.94 - samples/sec: 2335.41 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-24 10:04:31,241 epoch 2 - iter 146/738 - loss 0.12231896 - time (sec): 14.25 - samples/sec: 2342.68 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-24 10:04:37,881 epoch 2 - iter 219/738 - loss 0.12111484 - time (sec): 20.89 - samples/sec: 2339.29 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-24 10:04:45,345 epoch 2 - iter 292/738 - loss 0.12184837 - time (sec): 28.36 - samples/sec: 2317.62 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-24 10:04:52,383 epoch 2 - iter 365/738 - loss 0.12080821 - time (sec): 35.40 - samples/sec: 2342.50 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-24 10:04:59,079 epoch 2 - iter 438/738 - loss 0.11532571 - time (sec): 42.09 - samples/sec: 2347.84 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-24 10:05:06,120 epoch 2 - iter 511/738 - loss 0.11512762 - time (sec): 49.13 - samples/sec: 2336.44 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-24 10:05:13,584 epoch 2 - iter 584/738 - loss 0.11551858 - time (sec): 56.60 - samples/sec: 2347.44 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-24 10:05:20,545 epoch 2 - iter 657/738 - loss 0.11451103 - time (sec): 63.56 - samples/sec: 2343.30 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-24 10:05:27,102 epoch 2 - iter 730/738 - loss 0.11268099 - time (sec): 70.11 - samples/sec: 2353.65 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-24 10:05:27,733 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:05:27,734 EPOCH 2 done: loss 0.1124 - lr: 0.000027 |
|
2023-10-24 10:05:36,219 DEV : loss 0.1031927615404129 - f1-score (micro avg) 0.8039 |
|
2023-10-24 10:05:36,241 saving best model |
|
2023-10-24 10:05:36,964 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:05:43,681 epoch 3 - iter 73/738 - loss 0.06142961 - time (sec): 6.72 - samples/sec: 2392.58 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-24 10:05:50,369 epoch 3 - iter 146/738 - loss 0.06320856 - time (sec): 13.40 - samples/sec: 2398.13 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-24 10:05:57,239 epoch 3 - iter 219/738 - loss 0.06406728 - time (sec): 20.27 - samples/sec: 2350.76 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-24 10:06:04,920 epoch 3 - iter 292/738 - loss 0.06949115 - time (sec): 27.95 - samples/sec: 2363.73 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-24 10:06:12,095 epoch 3 - iter 365/738 - loss 0.06948464 - time (sec): 35.13 - samples/sec: 2368.81 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-24 10:06:18,669 epoch 3 - iter 438/738 - loss 0.06584312 - time (sec): 41.70 - samples/sec: 2376.09 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-24 10:06:25,135 epoch 3 - iter 511/738 - loss 0.06518111 - time (sec): 48.17 - samples/sec: 2382.47 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-24 10:06:32,856 epoch 3 - iter 584/738 - loss 0.06469238 - time (sec): 55.89 - samples/sec: 2372.12 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-24 10:06:39,410 epoch 3 - iter 657/738 - loss 0.06589124 - time (sec): 62.45 - samples/sec: 2374.79 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-24 10:06:46,704 epoch 3 - iter 730/738 - loss 0.06610678 - time (sec): 69.74 - samples/sec: 2361.48 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-24 10:06:47,394 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:06:47,394 EPOCH 3 done: loss 0.0660 - lr: 0.000023 |
|
2023-10-24 10:06:55,870 DEV : loss 0.10477666556835175 - f1-score (micro avg) 0.822 |
|
2023-10-24 10:06:55,892 saving best model |
|
2023-10-24 10:06:56,591 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:07:03,333 epoch 4 - iter 73/738 - loss 0.04080442 - time (sec): 6.74 - samples/sec: 2324.73 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-24 10:07:11,372 epoch 4 - iter 146/738 - loss 0.04335989 - time (sec): 14.78 - samples/sec: 2266.77 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-24 10:07:18,506 epoch 4 - iter 219/738 - loss 0.04233301 - time (sec): 21.91 - samples/sec: 2373.52 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-24 10:07:25,615 epoch 4 - iter 292/738 - loss 0.04153088 - time (sec): 29.02 - samples/sec: 2358.09 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-24 10:07:32,101 epoch 4 - iter 365/738 - loss 0.04133152 - time (sec): 35.51 - samples/sec: 2370.06 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-24 10:07:39,193 epoch 4 - iter 438/738 - loss 0.04256243 - time (sec): 42.60 - samples/sec: 2370.12 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-24 10:07:46,147 epoch 4 - iter 511/738 - loss 0.04221785 - time (sec): 49.56 - samples/sec: 2352.83 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-24 10:07:53,003 epoch 4 - iter 584/738 - loss 0.04300245 - time (sec): 56.41 - samples/sec: 2352.17 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-24 10:08:00,219 epoch 4 - iter 657/738 - loss 0.04276968 - time (sec): 63.63 - samples/sec: 2342.79 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-24 10:08:06,859 epoch 4 - iter 730/738 - loss 0.04317653 - time (sec): 70.27 - samples/sec: 2342.56 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-24 10:08:07,592 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:08:07,592 EPOCH 4 done: loss 0.0432 - lr: 0.000020 |
|
2023-10-24 10:08:16,095 DEV : loss 0.152599036693573 - f1-score (micro avg) 0.8181 |
|
2023-10-24 10:08:16,116 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:08:23,270 epoch 5 - iter 73/738 - loss 0.03851342 - time (sec): 7.15 - samples/sec: 2259.95 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-24 10:08:30,725 epoch 5 - iter 146/738 - loss 0.02771039 - time (sec): 14.61 - samples/sec: 2337.46 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-24 10:08:37,294 epoch 5 - iter 219/738 - loss 0.03124182 - time (sec): 21.18 - samples/sec: 2370.01 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-24 10:08:44,328 epoch 5 - iter 292/738 - loss 0.02900780 - time (sec): 28.21 - samples/sec: 2371.67 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-24 10:08:51,054 epoch 5 - iter 365/738 - loss 0.02939080 - time (sec): 34.94 - samples/sec: 2388.23 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-24 10:08:58,572 epoch 5 - iter 438/738 - loss 0.03158563 - time (sec): 42.45 - samples/sec: 2390.55 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-24 10:09:05,161 epoch 5 - iter 511/738 - loss 0.03343792 - time (sec): 49.04 - samples/sec: 2377.13 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-24 10:09:12,032 epoch 5 - iter 584/738 - loss 0.03263845 - time (sec): 55.91 - samples/sec: 2365.33 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-24 10:09:18,863 epoch 5 - iter 657/738 - loss 0.03330939 - time (sec): 62.75 - samples/sec: 2355.58 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-24 10:09:26,361 epoch 5 - iter 730/738 - loss 0.03263123 - time (sec): 70.24 - samples/sec: 2343.37 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-24 10:09:27,040 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:09:27,041 EPOCH 5 done: loss 0.0325 - lr: 0.000017 |
|
2023-10-24 10:09:35,593 DEV : loss 0.16575849056243896 - f1-score (micro avg) 0.8262 |
|
2023-10-24 10:09:35,615 saving best model |
|
2023-10-24 10:09:36,323 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:09:44,530 epoch 6 - iter 73/738 - loss 0.02678751 - time (sec): 8.21 - samples/sec: 2432.33 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-24 10:09:50,761 epoch 6 - iter 146/738 - loss 0.02291770 - time (sec): 14.44 - samples/sec: 2413.80 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-24 10:09:58,454 epoch 6 - iter 219/738 - loss 0.02553640 - time (sec): 22.13 - samples/sec: 2340.90 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-24 10:10:04,889 epoch 6 - iter 292/738 - loss 0.02480548 - time (sec): 28.56 - samples/sec: 2332.14 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-24 10:10:11,608 epoch 6 - iter 365/738 - loss 0.02547611 - time (sec): 35.28 - samples/sec: 2353.19 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-24 10:10:18,635 epoch 6 - iter 438/738 - loss 0.02484851 - time (sec): 42.31 - samples/sec: 2356.94 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-24 10:10:25,292 epoch 6 - iter 511/738 - loss 0.02610251 - time (sec): 48.97 - samples/sec: 2361.14 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-24 10:10:31,906 epoch 6 - iter 584/738 - loss 0.02565136 - time (sec): 55.58 - samples/sec: 2358.71 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-24 10:10:38,251 epoch 6 - iter 657/738 - loss 0.02458488 - time (sec): 61.93 - samples/sec: 2358.32 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-24 10:10:45,681 epoch 6 - iter 730/738 - loss 0.02431977 - time (sec): 69.36 - samples/sec: 2365.19 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-24 10:10:46,741 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:10:46,741 EPOCH 6 done: loss 0.0242 - lr: 0.000013 |
|
2023-10-24 10:10:55,250 DEV : loss 0.19801990687847137 - f1-score (micro avg) 0.8271 |
|
2023-10-24 10:10:55,271 saving best model |
|
2023-10-24 10:10:55,967 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:11:02,824 epoch 7 - iter 73/738 - loss 0.01696546 - time (sec): 6.86 - samples/sec: 2413.99 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-24 10:11:09,882 epoch 7 - iter 146/738 - loss 0.01294632 - time (sec): 13.91 - samples/sec: 2378.56 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-24 10:11:17,288 epoch 7 - iter 219/738 - loss 0.01398777 - time (sec): 21.32 - samples/sec: 2369.26 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-24 10:11:24,456 epoch 7 - iter 292/738 - loss 0.01547935 - time (sec): 28.49 - samples/sec: 2349.20 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-24 10:11:31,386 epoch 7 - iter 365/738 - loss 0.01507352 - time (sec): 35.42 - samples/sec: 2339.48 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-24 10:11:38,521 epoch 7 - iter 438/738 - loss 0.01688411 - time (sec): 42.55 - samples/sec: 2328.32 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-24 10:11:46,033 epoch 7 - iter 511/738 - loss 0.01735857 - time (sec): 50.06 - samples/sec: 2335.27 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-24 10:11:52,504 epoch 7 - iter 584/738 - loss 0.01711860 - time (sec): 56.54 - samples/sec: 2328.63 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-24 10:11:58,762 epoch 7 - iter 657/738 - loss 0.01671606 - time (sec): 62.79 - samples/sec: 2345.39 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-24 10:12:06,314 epoch 7 - iter 730/738 - loss 0.01629479 - time (sec): 70.35 - samples/sec: 2344.46 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-24 10:12:06,944 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:12:06,944 EPOCH 7 done: loss 0.0164 - lr: 0.000010 |
|
2023-10-24 10:12:15,453 DEV : loss 0.2032857984304428 - f1-score (micro avg) 0.8268 |
|
2023-10-24 10:12:15,475 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:12:22,424 epoch 8 - iter 73/738 - loss 0.01216183 - time (sec): 6.95 - samples/sec: 2287.40 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-24 10:12:29,512 epoch 8 - iter 146/738 - loss 0.01236948 - time (sec): 14.04 - samples/sec: 2336.90 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-24 10:12:37,062 epoch 8 - iter 219/738 - loss 0.01044188 - time (sec): 21.59 - samples/sec: 2309.04 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-24 10:12:43,982 epoch 8 - iter 292/738 - loss 0.01034487 - time (sec): 28.51 - samples/sec: 2346.41 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-24 10:12:51,543 epoch 8 - iter 365/738 - loss 0.01126341 - time (sec): 36.07 - samples/sec: 2368.99 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-24 10:12:58,262 epoch 8 - iter 438/738 - loss 0.01076147 - time (sec): 42.79 - samples/sec: 2353.67 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-24 10:13:05,389 epoch 8 - iter 511/738 - loss 0.01075803 - time (sec): 49.91 - samples/sec: 2354.08 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-24 10:13:12,279 epoch 8 - iter 584/738 - loss 0.01183127 - time (sec): 56.80 - samples/sec: 2342.58 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-24 10:13:19,173 epoch 8 - iter 657/738 - loss 0.01204421 - time (sec): 63.70 - samples/sec: 2347.40 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-24 10:13:25,559 epoch 8 - iter 730/738 - loss 0.01168359 - time (sec): 70.08 - samples/sec: 2351.74 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-24 10:13:26,318 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:13:26,318 EPOCH 8 done: loss 0.0116 - lr: 0.000007 |
|
2023-10-24 10:13:34,847 DEV : loss 0.19606834650039673 - f1-score (micro avg) 0.8411 |
|
2023-10-24 10:13:34,869 saving best model |
|
2023-10-24 10:13:35,564 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:13:42,230 epoch 9 - iter 73/738 - loss 0.00325841 - time (sec): 6.67 - samples/sec: 2350.12 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-24 10:13:49,266 epoch 9 - iter 146/738 - loss 0.00560515 - time (sec): 13.70 - samples/sec: 2327.56 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-24 10:13:55,847 epoch 9 - iter 219/738 - loss 0.00871536 - time (sec): 20.28 - samples/sec: 2341.82 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-24 10:14:03,005 epoch 9 - iter 292/738 - loss 0.00745041 - time (sec): 27.44 - samples/sec: 2358.00 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-24 10:14:10,081 epoch 9 - iter 365/738 - loss 0.00721985 - time (sec): 34.52 - samples/sec: 2337.43 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-24 10:14:16,553 epoch 9 - iter 438/738 - loss 0.00827858 - time (sec): 40.99 - samples/sec: 2344.81 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-24 10:14:22,960 epoch 9 - iter 511/738 - loss 0.00832065 - time (sec): 47.39 - samples/sec: 2343.01 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-24 10:14:30,542 epoch 9 - iter 584/738 - loss 0.00748758 - time (sec): 54.98 - samples/sec: 2349.55 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-24 10:14:37,973 epoch 9 - iter 657/738 - loss 0.00872752 - time (sec): 62.41 - samples/sec: 2360.31 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-24 10:14:45,591 epoch 9 - iter 730/738 - loss 0.00832303 - time (sec): 70.03 - samples/sec: 2355.51 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-24 10:14:46,236 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:14:46,236 EPOCH 9 done: loss 0.0083 - lr: 0.000003 |
|
2023-10-24 10:14:54,743 DEV : loss 0.21085196733474731 - f1-score (micro avg) 0.8465 |
|
2023-10-24 10:14:54,765 saving best model |
|
2023-10-24 10:14:55,461 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:15:03,114 epoch 10 - iter 73/738 - loss 0.00225549 - time (sec): 7.65 - samples/sec: 2254.22 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-24 10:15:09,825 epoch 10 - iter 146/738 - loss 0.00248018 - time (sec): 14.36 - samples/sec: 2313.87 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-24 10:15:16,491 epoch 10 - iter 219/738 - loss 0.00258571 - time (sec): 21.03 - samples/sec: 2308.26 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-24 10:15:23,656 epoch 10 - iter 292/738 - loss 0.00272149 - time (sec): 28.19 - samples/sec: 2317.62 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-24 10:15:31,083 epoch 10 - iter 365/738 - loss 0.00322358 - time (sec): 35.62 - samples/sec: 2357.62 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-24 10:15:38,019 epoch 10 - iter 438/738 - loss 0.00349996 - time (sec): 42.56 - samples/sec: 2352.67 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-24 10:15:45,376 epoch 10 - iter 511/738 - loss 0.00398963 - time (sec): 49.91 - samples/sec: 2355.98 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-24 10:15:52,559 epoch 10 - iter 584/738 - loss 0.00460257 - time (sec): 57.10 - samples/sec: 2352.17 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-24 10:15:58,908 epoch 10 - iter 657/738 - loss 0.00450873 - time (sec): 63.45 - samples/sec: 2352.91 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-24 10:16:05,753 epoch 10 - iter 730/738 - loss 0.00478145 - time (sec): 70.29 - samples/sec: 2345.44 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-24 10:16:06,439 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:16:06,440 EPOCH 10 done: loss 0.0048 - lr: 0.000000 |
|
2023-10-24 10:16:14,959 DEV : loss 0.21770432591438293 - f1-score (micro avg) 0.8466 |
|
2023-10-24 10:16:14,981 saving best model |
|
2023-10-24 10:16:16,242 ---------------------------------------------------------------------------------------------------- |
|
2023-10-24 10:16:16,243 Loading model from best epoch ... |
|
2023-10-24 10:16:18,060 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod |
|
2023-10-24 10:16:24,729 |
|
Results: |
|
- F-score (micro) 0.7923 |
|
- F-score (macro) 0.7091 |
|
- Accuracy 0.6784 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.8467 0.8753 0.8607 858 |
|
pers 0.7404 0.7914 0.7651 537 |
|
org 0.5532 0.5909 0.5714 132 |
|
time 0.5217 0.6667 0.5854 54 |
|
prod 0.7895 0.7377 0.7627 61 |
|
|
|
micro avg 0.7726 0.8130 0.7923 1642 |
|
macro avg 0.6903 0.7324 0.7091 1642 |
|
weighted avg 0.7755 0.8130 0.7935 1642 |
|
|
|
2023-10-24 10:16:24,729 ---------------------------------------------------------------------------------------------------- |
|
|