--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-base-historic-multilingual-64k-td-cased widget: - text: 'Parmi les remèdes recommandés par la Société , il faut mentionner celui que M . Schatzmann , de Lausanne , a proposé :' --- # Fine-tuned Flair Model on LeTemps French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [LeTemps French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-letemps.md) NER Dataset using hmBERT 64k as backbone LM. The LeTemps dataset consists of NE-annotated historical French newspaper articles from mid-19C to mid 20C. The following NEs were annotated: `loc`, `org` and `pers`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[4, 8]` * Learning Rates: `[3e-05, 5e-05]` And report micro F1-score on development set: | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average | |-------------------|-----------------|--------------|--------------|--------------|--------------|-----------------| | `bs8-e10-lr3e-05` | [**0.6654**][1] | [0.6554][2] | [0.6606][3] | [0.6604][4] | [0.6621][5] | 0.6608 ± 0.0036 | | `bs4-e10-lr3e-05` | [0.6537][6] | [0.6543][7] | [0.6525][8] | [0.6539][9] | [0.6501][10] | 0.6529 ± 0.0017 | | `bs8-e10-lr5e-05` | [0.6595][11] | [0.6164][12] | [0.6574][13] | [0.6465][14] | [0.649][15] | 0.6458 ± 0.0173 | | `bs4-e10-lr5e-05` | [0.6283][16] | [0.6079][17] | [0.6232][18] | [0.6372][19] | [0.5944][20] | 0.6182 ± 0.017 | [1]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/stefan-it/hmbench-letemps-fr-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️