stefan-it commited on
Commit
f1abd3a
1 Parent(s): 4561ea5

readme: add initial version of model card (#1)

Browse files

- readme: add initial version of model card (856a70371f791af46512a7545b7f5b1d1b2a0eec)

Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - flair
6
+ - token-classification
7
+ - sequence-tagger-model
8
+ base_model: dbmdz/bert-tiny-historic-multilingual-cased
9
+ widget:
10
+ - text: Cp . Eur . Phoen . 240 , 1 , αἷμα ddiov φλέγέι .
11
+ ---
12
+
13
+ # Fine-tuned Flair Model on AjMC English NER Dataset (HIPE-2022)
14
+
15
+ This Flair model was fine-tuned on the
16
+ [AjMC English](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md)
17
+ NER Dataset using hmBERT Tiny as backbone LM.
18
+
19
+ The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics,
20
+ and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/)
21
+ project.
22
+
23
+ The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`.
24
+
25
+ # Results
26
+
27
+ We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
28
+
29
+ * Batch Sizes: `[4, 8]`
30
+ * Learning Rates: `[5e-05, 3e-05]`
31
+
32
+ And report micro F1-score on development set:
33
+
34
+ | Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
35
+ |-------------------|-----------------|--------------|--------------|--------------|--------------|-----------------|
36
+ | `bs4-e10-lr5e-05` | [**0.5579**][1] | [0.5082][2] | [0.5434][3] | [0.4949][4] | [0.4882][5] | 0.5185 ± 0.0306 |
37
+ | `bs8-e10-lr5e-05` | [0.5301][6] | [0.468][7] | [0.525][8] | [0.4989][9] | [0.4707][10] | 0.4985 ± 0.0292 |
38
+ | `bs4-e10-lr3e-05` | [0.4972][11] | [0.427][12] | [0.4745][13] | [0.4394][14] | [0.4249][15] | 0.4526 ± 0.0319 |
39
+ | `bs8-e10-lr3e-05` | [0.4402][16] | [0.3531][17] | [0.4141][18] | [0.3808][19] | [0.4073][20] | 0.3991 ± 0.0333 |
40
+
41
+ [1]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
42
+ [2]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
43
+ [3]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
44
+ [4]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
45
+ [5]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
46
+ [6]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
47
+ [7]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
48
+ [8]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
49
+ [9]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
50
+ [10]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
51
+ [11]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
52
+ [12]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
53
+ [13]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
54
+ [14]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
55
+ [15]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
56
+ [16]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
57
+ [17]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
58
+ [18]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
59
+ [19]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
60
+ [20]: https://hf.co/stefan-it/hmbench-ajmc-en-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
61
+
62
+ The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.
63
+
64
+ More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
65
+
66
+ # Acknowledgements
67
+
68
+ We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
69
+ [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
70
+
71
+ Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
72
+ Many Thanks for providing access to the TPUs ❤️