File size: 23,929 Bytes
c7ce1bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-19 23:54:46,265 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,265 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-19 23:54:46,265 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,265 MultiCorpus: 1166 train + 165 dev + 415 test sentences
 - NER_HIPE_2022 Corpus: 1166 train + 165 dev + 415 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fi/with_doc_seperator
2023-10-19 23:54:46,265 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,265 Train:  1166 sentences
2023-10-19 23:54:46,265         (train_with_dev=False, train_with_test=False)
2023-10-19 23:54:46,265 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,265 Training Params:
2023-10-19 23:54:46,265  - learning_rate: "5e-05" 
2023-10-19 23:54:46,265  - mini_batch_size: "4"
2023-10-19 23:54:46,265  - max_epochs: "10"
2023-10-19 23:54:46,265  - shuffle: "True"
2023-10-19 23:54:46,265 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,265 Plugins:
2023-10-19 23:54:46,265  - TensorboardLogger
2023-10-19 23:54:46,265  - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 23:54:46,265 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,266 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 23:54:46,266  - metric: "('micro avg', 'f1-score')"
2023-10-19 23:54:46,266 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,266 Computation:
2023-10-19 23:54:46,266  - compute on device: cuda:0
2023-10-19 23:54:46,266  - embedding storage: none
2023-10-19 23:54:46,266 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,266 Model training base path: "hmbench-newseye/fi-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-19 23:54:46,266 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,266 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:46,266 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 23:54:46,793 epoch 1 - iter 29/292 - loss 3.55752914 - time (sec): 0.53 - samples/sec: 7908.79 - lr: 0.000005 - momentum: 0.000000
2023-10-19 23:54:47,324 epoch 1 - iter 58/292 - loss 3.51797914 - time (sec): 1.06 - samples/sec: 8808.85 - lr: 0.000010 - momentum: 0.000000
2023-10-19 23:54:47,833 epoch 1 - iter 87/292 - loss 3.38770600 - time (sec): 1.57 - samples/sec: 8612.55 - lr: 0.000015 - momentum: 0.000000
2023-10-19 23:54:48,346 epoch 1 - iter 116/292 - loss 3.15720938 - time (sec): 2.08 - samples/sec: 8491.67 - lr: 0.000020 - momentum: 0.000000
2023-10-19 23:54:48,870 epoch 1 - iter 145/292 - loss 2.91319087 - time (sec): 2.60 - samples/sec: 8456.38 - lr: 0.000025 - momentum: 0.000000
2023-10-19 23:54:49,365 epoch 1 - iter 174/292 - loss 2.68788876 - time (sec): 3.10 - samples/sec: 8374.19 - lr: 0.000030 - momentum: 0.000000
2023-10-19 23:54:49,915 epoch 1 - iter 203/292 - loss 2.45249775 - time (sec): 3.65 - samples/sec: 8479.75 - lr: 0.000035 - momentum: 0.000000
2023-10-19 23:54:50,473 epoch 1 - iter 232/292 - loss 2.21945254 - time (sec): 4.21 - samples/sec: 8501.77 - lr: 0.000040 - momentum: 0.000000
2023-10-19 23:54:50,953 epoch 1 - iter 261/292 - loss 2.05466586 - time (sec): 4.69 - samples/sec: 8518.18 - lr: 0.000045 - momentum: 0.000000
2023-10-19 23:54:51,428 epoch 1 - iter 290/292 - loss 1.91851237 - time (sec): 5.16 - samples/sec: 8529.52 - lr: 0.000049 - momentum: 0.000000
2023-10-19 23:54:51,462 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:51,462 EPOCH 1 done: loss 1.9040 - lr: 0.000049
2023-10-19 23:54:51,728 DEV : loss 0.45997393131256104 - f1-score (micro avg)  0.0
2023-10-19 23:54:51,732 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:52,162 epoch 2 - iter 29/292 - loss 0.58656023 - time (sec): 0.43 - samples/sec: 7909.71 - lr: 0.000049 - momentum: 0.000000
2023-10-19 23:54:52,603 epoch 2 - iter 58/292 - loss 0.63439941 - time (sec): 0.87 - samples/sec: 9252.63 - lr: 0.000049 - momentum: 0.000000
2023-10-19 23:54:53,049 epoch 2 - iter 87/292 - loss 0.63149781 - time (sec): 1.32 - samples/sec: 9293.51 - lr: 0.000048 - momentum: 0.000000
2023-10-19 23:54:53,493 epoch 2 - iter 116/292 - loss 0.62294731 - time (sec): 1.76 - samples/sec: 9411.80 - lr: 0.000048 - momentum: 0.000000
2023-10-19 23:54:53,982 epoch 2 - iter 145/292 - loss 0.67190983 - time (sec): 2.25 - samples/sec: 9782.63 - lr: 0.000047 - momentum: 0.000000
2023-10-19 23:54:54,587 epoch 2 - iter 174/292 - loss 0.65041157 - time (sec): 2.85 - samples/sec: 9342.32 - lr: 0.000047 - momentum: 0.000000
2023-10-19 23:54:55,159 epoch 2 - iter 203/292 - loss 0.62124438 - time (sec): 3.43 - samples/sec: 9211.13 - lr: 0.000046 - momentum: 0.000000
2023-10-19 23:54:55,714 epoch 2 - iter 232/292 - loss 0.61325278 - time (sec): 3.98 - samples/sec: 8902.60 - lr: 0.000046 - momentum: 0.000000
2023-10-19 23:54:56,273 epoch 2 - iter 261/292 - loss 0.60750010 - time (sec): 4.54 - samples/sec: 8763.90 - lr: 0.000045 - momentum: 0.000000
2023-10-19 23:54:56,780 epoch 2 - iter 290/292 - loss 0.59371287 - time (sec): 5.05 - samples/sec: 8713.85 - lr: 0.000045 - momentum: 0.000000
2023-10-19 23:54:56,811 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:56,811 EPOCH 2 done: loss 0.5942 - lr: 0.000045
2023-10-19 23:54:57,612 DEV : loss 0.34521862864494324 - f1-score (micro avg)  0.0
2023-10-19 23:54:57,616 ----------------------------------------------------------------------------------------------------
2023-10-19 23:54:58,150 epoch 3 - iter 29/292 - loss 0.43874260 - time (sec): 0.53 - samples/sec: 8885.33 - lr: 0.000044 - momentum: 0.000000
2023-10-19 23:54:58,660 epoch 3 - iter 58/292 - loss 0.45959734 - time (sec): 1.04 - samples/sec: 8864.19 - lr: 0.000043 - momentum: 0.000000
2023-10-19 23:54:59,178 epoch 3 - iter 87/292 - loss 0.46972901 - time (sec): 1.56 - samples/sec: 8336.04 - lr: 0.000043 - momentum: 0.000000
2023-10-19 23:54:59,714 epoch 3 - iter 116/292 - loss 0.45936071 - time (sec): 2.10 - samples/sec: 8357.63 - lr: 0.000042 - momentum: 0.000000
2023-10-19 23:55:00,257 epoch 3 - iter 145/292 - loss 0.48567862 - time (sec): 2.64 - samples/sec: 8187.12 - lr: 0.000042 - momentum: 0.000000
2023-10-19 23:55:00,798 epoch 3 - iter 174/292 - loss 0.47727066 - time (sec): 3.18 - samples/sec: 8207.62 - lr: 0.000041 - momentum: 0.000000
2023-10-19 23:55:01,351 epoch 3 - iter 203/292 - loss 0.48496424 - time (sec): 3.73 - samples/sec: 8427.15 - lr: 0.000041 - momentum: 0.000000
2023-10-19 23:55:01,873 epoch 3 - iter 232/292 - loss 0.48084606 - time (sec): 4.26 - samples/sec: 8398.02 - lr: 0.000040 - momentum: 0.000000
2023-10-19 23:55:02,397 epoch 3 - iter 261/292 - loss 0.47958169 - time (sec): 4.78 - samples/sec: 8305.75 - lr: 0.000040 - momentum: 0.000000
2023-10-19 23:55:02,917 epoch 3 - iter 290/292 - loss 0.47094732 - time (sec): 5.30 - samples/sec: 8310.97 - lr: 0.000039 - momentum: 0.000000
2023-10-19 23:55:02,952 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:02,953 EPOCH 3 done: loss 0.4685 - lr: 0.000039
2023-10-19 23:55:03,596 DEV : loss 0.31381186842918396 - f1-score (micro avg)  0.1303
2023-10-19 23:55:03,600 saving best model
2023-10-19 23:55:03,629 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:04,156 epoch 4 - iter 29/292 - loss 0.43177072 - time (sec): 0.53 - samples/sec: 8615.07 - lr: 0.000038 - momentum: 0.000000
2023-10-19 23:55:04,683 epoch 4 - iter 58/292 - loss 0.41853015 - time (sec): 1.05 - samples/sec: 8960.14 - lr: 0.000038 - momentum: 0.000000
2023-10-19 23:55:05,216 epoch 4 - iter 87/292 - loss 0.39904768 - time (sec): 1.59 - samples/sec: 8975.40 - lr: 0.000037 - momentum: 0.000000
2023-10-19 23:55:05,693 epoch 4 - iter 116/292 - loss 0.39486048 - time (sec): 2.06 - samples/sec: 8683.45 - lr: 0.000037 - momentum: 0.000000
2023-10-19 23:55:06,182 epoch 4 - iter 145/292 - loss 0.38926525 - time (sec): 2.55 - samples/sec: 8552.06 - lr: 0.000036 - momentum: 0.000000
2023-10-19 23:55:06,693 epoch 4 - iter 174/292 - loss 0.38841178 - time (sec): 3.06 - samples/sec: 8439.81 - lr: 0.000036 - momentum: 0.000000
2023-10-19 23:55:07,187 epoch 4 - iter 203/292 - loss 0.38717609 - time (sec): 3.56 - samples/sec: 8323.23 - lr: 0.000035 - momentum: 0.000000
2023-10-19 23:55:07,715 epoch 4 - iter 232/292 - loss 0.39343263 - time (sec): 4.09 - samples/sec: 8440.52 - lr: 0.000035 - momentum: 0.000000
2023-10-19 23:55:08,255 epoch 4 - iter 261/292 - loss 0.41230712 - time (sec): 4.63 - samples/sec: 8572.69 - lr: 0.000034 - momentum: 0.000000
2023-10-19 23:55:08,816 epoch 4 - iter 290/292 - loss 0.41910163 - time (sec): 5.19 - samples/sec: 8487.60 - lr: 0.000033 - momentum: 0.000000
2023-10-19 23:55:08,856 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:08,856 EPOCH 4 done: loss 0.4154 - lr: 0.000033
2023-10-19 23:55:09,491 DEV : loss 0.3016578257083893 - f1-score (micro avg)  0.2328
2023-10-19 23:55:09,495 saving best model
2023-10-19 23:55:09,530 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:10,074 epoch 5 - iter 29/292 - loss 0.43229368 - time (sec): 0.54 - samples/sec: 8265.43 - lr: 0.000033 - momentum: 0.000000
2023-10-19 23:55:10,601 epoch 5 - iter 58/292 - loss 0.37539253 - time (sec): 1.07 - samples/sec: 8654.01 - lr: 0.000032 - momentum: 0.000000
2023-10-19 23:55:11,118 epoch 5 - iter 87/292 - loss 0.40406274 - time (sec): 1.59 - samples/sec: 8605.36 - lr: 0.000032 - momentum: 0.000000
2023-10-19 23:55:11,636 epoch 5 - iter 116/292 - loss 0.40222319 - time (sec): 2.11 - samples/sec: 8412.63 - lr: 0.000031 - momentum: 0.000000
2023-10-19 23:55:12,149 epoch 5 - iter 145/292 - loss 0.39690686 - time (sec): 2.62 - samples/sec: 8624.99 - lr: 0.000031 - momentum: 0.000000
2023-10-19 23:55:12,669 epoch 5 - iter 174/292 - loss 0.39595604 - time (sec): 3.14 - samples/sec: 8461.59 - lr: 0.000030 - momentum: 0.000000
2023-10-19 23:55:13,173 epoch 5 - iter 203/292 - loss 0.39014674 - time (sec): 3.64 - samples/sec: 8592.12 - lr: 0.000030 - momentum: 0.000000
2023-10-19 23:55:13,667 epoch 5 - iter 232/292 - loss 0.39145583 - time (sec): 4.14 - samples/sec: 8507.40 - lr: 0.000029 - momentum: 0.000000
2023-10-19 23:55:14,174 epoch 5 - iter 261/292 - loss 0.38172039 - time (sec): 4.64 - samples/sec: 8575.01 - lr: 0.000028 - momentum: 0.000000
2023-10-19 23:55:14,665 epoch 5 - iter 290/292 - loss 0.37542897 - time (sec): 5.13 - samples/sec: 8597.45 - lr: 0.000028 - momentum: 0.000000
2023-10-19 23:55:14,700 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:14,700 EPOCH 5 done: loss 0.3775 - lr: 0.000028
2023-10-19 23:55:15,336 DEV : loss 0.2973732054233551 - f1-score (micro avg)  0.2654
2023-10-19 23:55:15,340 saving best model
2023-10-19 23:55:15,372 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:15,873 epoch 6 - iter 29/292 - loss 0.37312102 - time (sec): 0.50 - samples/sec: 9364.57 - lr: 0.000027 - momentum: 0.000000
2023-10-19 23:55:16,391 epoch 6 - iter 58/292 - loss 0.36942596 - time (sec): 1.02 - samples/sec: 8762.88 - lr: 0.000027 - momentum: 0.000000
2023-10-19 23:55:16,914 epoch 6 - iter 87/292 - loss 0.34805366 - time (sec): 1.54 - samples/sec: 8399.49 - lr: 0.000026 - momentum: 0.000000
2023-10-19 23:55:17,447 epoch 6 - iter 116/292 - loss 0.37301859 - time (sec): 2.07 - samples/sec: 8795.53 - lr: 0.000026 - momentum: 0.000000
2023-10-19 23:55:17,968 epoch 6 - iter 145/292 - loss 0.38869681 - time (sec): 2.60 - samples/sec: 8817.51 - lr: 0.000025 - momentum: 0.000000
2023-10-19 23:55:18,485 epoch 6 - iter 174/292 - loss 0.36418246 - time (sec): 3.11 - samples/sec: 8987.93 - lr: 0.000025 - momentum: 0.000000
2023-10-19 23:55:19,005 epoch 6 - iter 203/292 - loss 0.36949889 - time (sec): 3.63 - samples/sec: 8807.31 - lr: 0.000024 - momentum: 0.000000
2023-10-19 23:55:19,515 epoch 6 - iter 232/292 - loss 0.36160845 - time (sec): 4.14 - samples/sec: 8753.61 - lr: 0.000023 - momentum: 0.000000
2023-10-19 23:55:20,009 epoch 6 - iter 261/292 - loss 0.36352966 - time (sec): 4.64 - samples/sec: 8640.60 - lr: 0.000023 - momentum: 0.000000
2023-10-19 23:55:20,507 epoch 6 - iter 290/292 - loss 0.35857782 - time (sec): 5.13 - samples/sec: 8588.66 - lr: 0.000022 - momentum: 0.000000
2023-10-19 23:55:20,538 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:20,538 EPOCH 6 done: loss 0.3575 - lr: 0.000022
2023-10-19 23:55:21,183 DEV : loss 0.29466673731803894 - f1-score (micro avg)  0.2937
2023-10-19 23:55:21,187 saving best model
2023-10-19 23:55:21,221 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:21,729 epoch 7 - iter 29/292 - loss 0.38819137 - time (sec): 0.51 - samples/sec: 8190.47 - lr: 0.000022 - momentum: 0.000000
2023-10-19 23:55:22,263 epoch 7 - iter 58/292 - loss 0.34242214 - time (sec): 1.04 - samples/sec: 8732.14 - lr: 0.000021 - momentum: 0.000000
2023-10-19 23:55:22,798 epoch 7 - iter 87/292 - loss 0.35717419 - time (sec): 1.58 - samples/sec: 8812.53 - lr: 0.000021 - momentum: 0.000000
2023-10-19 23:55:23,307 epoch 7 - iter 116/292 - loss 0.37602817 - time (sec): 2.09 - samples/sec: 8721.64 - lr: 0.000020 - momentum: 0.000000
2023-10-19 23:55:23,820 epoch 7 - iter 145/292 - loss 0.36879662 - time (sec): 2.60 - samples/sec: 8665.03 - lr: 0.000020 - momentum: 0.000000
2023-10-19 23:55:24,342 epoch 7 - iter 174/292 - loss 0.36046721 - time (sec): 3.12 - samples/sec: 8544.70 - lr: 0.000019 - momentum: 0.000000
2023-10-19 23:55:24,835 epoch 7 - iter 203/292 - loss 0.35584894 - time (sec): 3.61 - samples/sec: 8468.06 - lr: 0.000018 - momentum: 0.000000
2023-10-19 23:55:25,332 epoch 7 - iter 232/292 - loss 0.35765109 - time (sec): 4.11 - samples/sec: 8520.60 - lr: 0.000018 - momentum: 0.000000
2023-10-19 23:55:25,837 epoch 7 - iter 261/292 - loss 0.34589803 - time (sec): 4.62 - samples/sec: 8620.32 - lr: 0.000017 - momentum: 0.000000
2023-10-19 23:55:26,370 epoch 7 - iter 290/292 - loss 0.33965089 - time (sec): 5.15 - samples/sec: 8590.24 - lr: 0.000017 - momentum: 0.000000
2023-10-19 23:55:26,397 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:26,397 EPOCH 7 done: loss 0.3397 - lr: 0.000017
2023-10-19 23:55:27,049 DEV : loss 0.29104095697402954 - f1-score (micro avg)  0.3193
2023-10-19 23:55:27,052 saving best model
2023-10-19 23:55:27,085 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:27,615 epoch 8 - iter 29/292 - loss 0.29154439 - time (sec): 0.53 - samples/sec: 8832.63 - lr: 0.000016 - momentum: 0.000000
2023-10-19 23:55:28,142 epoch 8 - iter 58/292 - loss 0.34250586 - time (sec): 1.06 - samples/sec: 9218.94 - lr: 0.000016 - momentum: 0.000000
2023-10-19 23:55:28,629 epoch 8 - iter 87/292 - loss 0.32930383 - time (sec): 1.54 - samples/sec: 8830.03 - lr: 0.000015 - momentum: 0.000000
2023-10-19 23:55:29,160 epoch 8 - iter 116/292 - loss 0.32840663 - time (sec): 2.07 - samples/sec: 8764.31 - lr: 0.000015 - momentum: 0.000000
2023-10-19 23:55:29,636 epoch 8 - iter 145/292 - loss 0.32284264 - time (sec): 2.55 - samples/sec: 8542.07 - lr: 0.000014 - momentum: 0.000000
2023-10-19 23:55:30,078 epoch 8 - iter 174/292 - loss 0.32209124 - time (sec): 2.99 - samples/sec: 8424.20 - lr: 0.000013 - momentum: 0.000000
2023-10-19 23:55:30,578 epoch 8 - iter 203/292 - loss 0.33155736 - time (sec): 3.49 - samples/sec: 8675.07 - lr: 0.000013 - momentum: 0.000000
2023-10-19 23:55:31,241 epoch 8 - iter 232/292 - loss 0.32136242 - time (sec): 4.16 - samples/sec: 8525.82 - lr: 0.000012 - momentum: 0.000000
2023-10-19 23:55:31,714 epoch 8 - iter 261/292 - loss 0.32137603 - time (sec): 4.63 - samples/sec: 8544.97 - lr: 0.000012 - momentum: 0.000000
2023-10-19 23:55:32,222 epoch 8 - iter 290/292 - loss 0.32337631 - time (sec): 5.14 - samples/sec: 8605.69 - lr: 0.000011 - momentum: 0.000000
2023-10-19 23:55:32,257 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:32,257 EPOCH 8 done: loss 0.3226 - lr: 0.000011
2023-10-19 23:55:32,918 DEV : loss 0.29328519105911255 - f1-score (micro avg)  0.3129
2023-10-19 23:55:32,923 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:33,419 epoch 9 - iter 29/292 - loss 0.29822543 - time (sec): 0.50 - samples/sec: 8134.79 - lr: 0.000011 - momentum: 0.000000
2023-10-19 23:55:33,914 epoch 9 - iter 58/292 - loss 0.34739399 - time (sec): 0.99 - samples/sec: 8415.03 - lr: 0.000010 - momentum: 0.000000
2023-10-19 23:55:34,382 epoch 9 - iter 87/292 - loss 0.34634734 - time (sec): 1.46 - samples/sec: 8010.70 - lr: 0.000010 - momentum: 0.000000
2023-10-19 23:55:34,892 epoch 9 - iter 116/292 - loss 0.34386116 - time (sec): 1.97 - samples/sec: 8071.38 - lr: 0.000009 - momentum: 0.000000
2023-10-19 23:55:35,411 epoch 9 - iter 145/292 - loss 0.34301480 - time (sec): 2.49 - samples/sec: 8269.81 - lr: 0.000008 - momentum: 0.000000
2023-10-19 23:55:35,926 epoch 9 - iter 174/292 - loss 0.33151984 - time (sec): 3.00 - samples/sec: 8533.95 - lr: 0.000008 - momentum: 0.000000
2023-10-19 23:55:36,436 epoch 9 - iter 203/292 - loss 0.33282371 - time (sec): 3.51 - samples/sec: 8455.15 - lr: 0.000007 - momentum: 0.000000
2023-10-19 23:55:36,974 epoch 9 - iter 232/292 - loss 0.33502228 - time (sec): 4.05 - samples/sec: 8611.47 - lr: 0.000007 - momentum: 0.000000
2023-10-19 23:55:37,492 epoch 9 - iter 261/292 - loss 0.32271061 - time (sec): 4.57 - samples/sec: 8680.15 - lr: 0.000006 - momentum: 0.000000
2023-10-19 23:55:38,050 epoch 9 - iter 290/292 - loss 0.31960374 - time (sec): 5.13 - samples/sec: 8640.65 - lr: 0.000006 - momentum: 0.000000
2023-10-19 23:55:38,079 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:38,079 EPOCH 9 done: loss 0.3192 - lr: 0.000006
2023-10-19 23:55:38,728 DEV : loss 0.2915344834327698 - f1-score (micro avg)  0.3067
2023-10-19 23:55:38,731 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:39,234 epoch 10 - iter 29/292 - loss 0.25691072 - time (sec): 0.50 - samples/sec: 9550.60 - lr: 0.000005 - momentum: 0.000000
2023-10-19 23:55:39,752 epoch 10 - iter 58/292 - loss 0.32264057 - time (sec): 1.02 - samples/sec: 9710.22 - lr: 0.000005 - momentum: 0.000000
2023-10-19 23:55:40,262 epoch 10 - iter 87/292 - loss 0.29381973 - time (sec): 1.53 - samples/sec: 9342.81 - lr: 0.000004 - momentum: 0.000000
2023-10-19 23:55:40,745 epoch 10 - iter 116/292 - loss 0.29276188 - time (sec): 2.01 - samples/sec: 9055.61 - lr: 0.000003 - momentum: 0.000000
2023-10-19 23:55:41,215 epoch 10 - iter 145/292 - loss 0.30739420 - time (sec): 2.48 - samples/sec: 8724.85 - lr: 0.000003 - momentum: 0.000000
2023-10-19 23:55:41,719 epoch 10 - iter 174/292 - loss 0.30017946 - time (sec): 2.99 - samples/sec: 8931.07 - lr: 0.000002 - momentum: 0.000000
2023-10-19 23:55:42,236 epoch 10 - iter 203/292 - loss 0.29891419 - time (sec): 3.50 - samples/sec: 8834.20 - lr: 0.000002 - momentum: 0.000000
2023-10-19 23:55:42,768 epoch 10 - iter 232/292 - loss 0.30792335 - time (sec): 4.04 - samples/sec: 8901.96 - lr: 0.000001 - momentum: 0.000000
2023-10-19 23:55:43,258 epoch 10 - iter 261/292 - loss 0.31694630 - time (sec): 4.53 - samples/sec: 8787.52 - lr: 0.000001 - momentum: 0.000000
2023-10-19 23:55:43,793 epoch 10 - iter 290/292 - loss 0.31667346 - time (sec): 5.06 - samples/sec: 8740.26 - lr: 0.000000 - momentum: 0.000000
2023-10-19 23:55:43,823 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:43,823 EPOCH 10 done: loss 0.3158 - lr: 0.000000
2023-10-19 23:55:44,474 DEV : loss 0.2926194965839386 - f1-score (micro avg)  0.307
2023-10-19 23:55:44,506 ----------------------------------------------------------------------------------------------------
2023-10-19 23:55:44,507 Loading model from best epoch ...
2023-10-19 23:55:44,580 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-19 23:55:45,486 
Results:
- F-score (micro) 0.3714
- F-score (macro) 0.196
- Accuracy 0.237

By class:
              precision    recall  f1-score   support

         PER     0.3965    0.3908    0.3936       348
         LOC     0.3316    0.4751    0.3906       261
         ORG     0.0000    0.0000    0.0000        52
   HumanProd     0.0000    0.0000    0.0000        22

   micro avg     0.3626    0.3807    0.3714       683
   macro avg     0.1820    0.2165    0.1960       683
weighted avg     0.3287    0.3807    0.3498       683

2023-10-19 23:55:45,486 ----------------------------------------------------------------------------------------------------