Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697561232.4c6324b99746.1390.8 +3 -0
- test.tsv +0 -0
- training.log +242 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df75363ec21b83a5b4761bde0861571d07df98b8a940fd56caa896c075b787ae
|
3 |
+
size 440966725
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 16:48:01 0.0000 0.8052 0.1861 0.6556 0.5880 0.6200 0.4585
|
3 |
+
2 16:48:55 0.0000 0.1564 0.1185 0.7141 0.6873 0.7004 0.5546
|
4 |
+
3 16:49:50 0.0000 0.0831 0.1610 0.7641 0.7115 0.7368 0.6019
|
5 |
+
4 16:50:44 0.0000 0.0537 0.1712 0.7857 0.7623 0.7738 0.6440
|
6 |
+
5 16:51:39 0.0000 0.0315 0.1702 0.7553 0.8014 0.7777 0.6508
|
7 |
+
6 16:52:35 0.0000 0.0230 0.1998 0.8110 0.7952 0.8030 0.6821
|
8 |
+
7 16:53:30 0.0000 0.0135 0.2047 0.7845 0.7998 0.7921 0.6691
|
9 |
+
8 16:54:25 0.0000 0.0088 0.2188 0.7850 0.8194 0.8018 0.6841
|
10 |
+
9 16:55:20 0.0000 0.0065 0.2287 0.8047 0.8084 0.8066 0.6880
|
11 |
+
10 16:56:15 0.0000 0.0048 0.2345 0.8031 0.8069 0.8050 0.6853
|
runs/events.out.tfevents.1697561232.4c6324b99746.1390.8
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f914a6f47018c99bc5ef388d428ea2f3cde33e1db0cbe0403f83ad7e4721ae5
|
3 |
+
size 253592
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 16:47:12,055 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 16:47:12,057 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 16:47:12,057 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 16:47:12,057 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
49 |
+
2023-10-17 16:47:12,057 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 16:47:12,057 Train: 3575 sentences
|
51 |
+
2023-10-17 16:47:12,057 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 16:47:12,057 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 16:47:12,058 Training Params:
|
54 |
+
2023-10-17 16:47:12,058 - learning_rate: "3e-05"
|
55 |
+
2023-10-17 16:47:12,058 - mini_batch_size: "8"
|
56 |
+
2023-10-17 16:47:12,058 - max_epochs: "10"
|
57 |
+
2023-10-17 16:47:12,058 - shuffle: "True"
|
58 |
+
2023-10-17 16:47:12,058 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 16:47:12,058 Plugins:
|
60 |
+
2023-10-17 16:47:12,058 - TensorboardLogger
|
61 |
+
2023-10-17 16:47:12,058 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 16:47:12,058 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 16:47:12,058 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 16:47:12,058 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 16:47:12,058 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 16:47:12,059 Computation:
|
67 |
+
2023-10-17 16:47:12,059 - compute on device: cuda:0
|
68 |
+
2023-10-17 16:47:12,059 - embedding storage: none
|
69 |
+
2023-10-17 16:47:12,059 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 16:47:12,059 Model training base path: "hmbench-hipe2020/de-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
71 |
+
2023-10-17 16:47:12,059 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 16:47:12,059 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 16:47:12,059 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 16:47:16,186 epoch 1 - iter 44/447 - loss 3.49661378 - time (sec): 4.13 - samples/sec: 1872.19 - lr: 0.000003 - momentum: 0.000000
|
75 |
+
2023-10-17 16:47:20,660 epoch 1 - iter 88/447 - loss 2.61631042 - time (sec): 8.60 - samples/sec: 1956.66 - lr: 0.000006 - momentum: 0.000000
|
76 |
+
2023-10-17 16:47:24,936 epoch 1 - iter 132/447 - loss 1.93352666 - time (sec): 12.88 - samples/sec: 1984.67 - lr: 0.000009 - momentum: 0.000000
|
77 |
+
2023-10-17 16:47:28,939 epoch 1 - iter 176/447 - loss 1.57530896 - time (sec): 16.88 - samples/sec: 2000.58 - lr: 0.000012 - momentum: 0.000000
|
78 |
+
2023-10-17 16:47:33,220 epoch 1 - iter 220/447 - loss 1.34725282 - time (sec): 21.16 - samples/sec: 1996.09 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 16:47:37,715 epoch 1 - iter 264/447 - loss 1.15393413 - time (sec): 25.65 - samples/sec: 2022.57 - lr: 0.000018 - momentum: 0.000000
|
80 |
+
2023-10-17 16:47:41,873 epoch 1 - iter 308/447 - loss 1.04226944 - time (sec): 29.81 - samples/sec: 2024.30 - lr: 0.000021 - momentum: 0.000000
|
81 |
+
2023-10-17 16:47:45,852 epoch 1 - iter 352/447 - loss 0.95292814 - time (sec): 33.79 - samples/sec: 2021.95 - lr: 0.000024 - momentum: 0.000000
|
82 |
+
2023-10-17 16:47:50,370 epoch 1 - iter 396/447 - loss 0.87278568 - time (sec): 38.31 - samples/sec: 2013.81 - lr: 0.000027 - momentum: 0.000000
|
83 |
+
2023-10-17 16:47:54,446 epoch 1 - iter 440/447 - loss 0.81583916 - time (sec): 42.39 - samples/sec: 2007.91 - lr: 0.000029 - momentum: 0.000000
|
84 |
+
2023-10-17 16:47:55,074 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 16:47:55,075 EPOCH 1 done: loss 0.8052 - lr: 0.000029
|
86 |
+
2023-10-17 16:48:01,442 DEV : loss 0.18609091639518738 - f1-score (micro avg) 0.62
|
87 |
+
2023-10-17 16:48:01,495 saving best model
|
88 |
+
2023-10-17 16:48:02,032 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 16:48:06,103 epoch 2 - iter 44/447 - loss 0.17646139 - time (sec): 4.07 - samples/sec: 2094.88 - lr: 0.000030 - momentum: 0.000000
|
90 |
+
2023-10-17 16:48:10,127 epoch 2 - iter 88/447 - loss 0.17558676 - time (sec): 8.09 - samples/sec: 2086.39 - lr: 0.000029 - momentum: 0.000000
|
91 |
+
2023-10-17 16:48:14,170 epoch 2 - iter 132/447 - loss 0.16683960 - time (sec): 12.14 - samples/sec: 2026.77 - lr: 0.000029 - momentum: 0.000000
|
92 |
+
2023-10-17 16:48:18,156 epoch 2 - iter 176/447 - loss 0.16952362 - time (sec): 16.12 - samples/sec: 1992.29 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-17 16:48:22,496 epoch 2 - iter 220/447 - loss 0.16761727 - time (sec): 20.46 - samples/sec: 2027.06 - lr: 0.000028 - momentum: 0.000000
|
94 |
+
2023-10-17 16:48:26,893 epoch 2 - iter 264/447 - loss 0.17109456 - time (sec): 24.86 - samples/sec: 2038.35 - lr: 0.000028 - momentum: 0.000000
|
95 |
+
2023-10-17 16:48:30,902 epoch 2 - iter 308/447 - loss 0.17214782 - time (sec): 28.87 - samples/sec: 2044.42 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-17 16:48:35,157 epoch 2 - iter 352/447 - loss 0.16542676 - time (sec): 33.12 - samples/sec: 2051.24 - lr: 0.000027 - momentum: 0.000000
|
97 |
+
2023-10-17 16:48:39,571 epoch 2 - iter 396/447 - loss 0.15856207 - time (sec): 37.54 - samples/sec: 2060.57 - lr: 0.000027 - momentum: 0.000000
|
98 |
+
2023-10-17 16:48:43,542 epoch 2 - iter 440/447 - loss 0.15666011 - time (sec): 41.51 - samples/sec: 2055.00 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-17 16:48:44,156 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 16:48:44,156 EPOCH 2 done: loss 0.1564 - lr: 0.000027
|
101 |
+
2023-10-17 16:48:55,101 DEV : loss 0.11850441992282867 - f1-score (micro avg) 0.7004
|
102 |
+
2023-10-17 16:48:55,153 saving best model
|
103 |
+
2023-10-17 16:48:56,532 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 16:49:00,603 epoch 3 - iter 44/447 - loss 0.08474878 - time (sec): 4.07 - samples/sec: 2113.03 - lr: 0.000026 - momentum: 0.000000
|
105 |
+
2023-10-17 16:49:04,693 epoch 3 - iter 88/447 - loss 0.08245773 - time (sec): 8.16 - samples/sec: 2090.39 - lr: 0.000026 - momentum: 0.000000
|
106 |
+
2023-10-17 16:49:09,017 epoch 3 - iter 132/447 - loss 0.08517300 - time (sec): 12.48 - samples/sec: 2086.23 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-17 16:49:13,016 epoch 3 - iter 176/447 - loss 0.08575584 - time (sec): 16.48 - samples/sec: 2062.81 - lr: 0.000025 - momentum: 0.000000
|
108 |
+
2023-10-17 16:49:17,520 epoch 3 - iter 220/447 - loss 0.08751252 - time (sec): 20.98 - samples/sec: 2038.05 - lr: 0.000025 - momentum: 0.000000
|
109 |
+
2023-10-17 16:49:22,077 epoch 3 - iter 264/447 - loss 0.08907774 - time (sec): 25.54 - samples/sec: 2025.88 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-17 16:49:26,176 epoch 3 - iter 308/447 - loss 0.08626226 - time (sec): 29.64 - samples/sec: 2027.47 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2023-10-17 16:49:30,200 epoch 3 - iter 352/447 - loss 0.08544823 - time (sec): 33.66 - samples/sec: 2036.17 - lr: 0.000024 - momentum: 0.000000
|
112 |
+
2023-10-17 16:49:34,477 epoch 3 - iter 396/447 - loss 0.08472916 - time (sec): 37.94 - samples/sec: 2041.16 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-17 16:49:38,389 epoch 3 - iter 440/447 - loss 0.08337869 - time (sec): 41.85 - samples/sec: 2039.72 - lr: 0.000023 - momentum: 0.000000
|
114 |
+
2023-10-17 16:49:39,011 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 16:49:39,011 EPOCH 3 done: loss 0.0831 - lr: 0.000023
|
116 |
+
2023-10-17 16:49:50,287 DEV : loss 0.16098077595233917 - f1-score (micro avg) 0.7368
|
117 |
+
2023-10-17 16:49:50,342 saving best model
|
118 |
+
2023-10-17 16:49:51,747 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 16:49:56,121 epoch 4 - iter 44/447 - loss 0.06080484 - time (sec): 4.37 - samples/sec: 2053.56 - lr: 0.000023 - momentum: 0.000000
|
120 |
+
2023-10-17 16:50:00,102 epoch 4 - iter 88/447 - loss 0.05047837 - time (sec): 8.35 - samples/sec: 2073.72 - lr: 0.000023 - momentum: 0.000000
|
121 |
+
2023-10-17 16:50:04,214 epoch 4 - iter 132/447 - loss 0.04822910 - time (sec): 12.46 - samples/sec: 2078.43 - lr: 0.000022 - momentum: 0.000000
|
122 |
+
2023-10-17 16:50:08,227 epoch 4 - iter 176/447 - loss 0.05146065 - time (sec): 16.48 - samples/sec: 2067.12 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-10-17 16:50:12,222 epoch 4 - iter 220/447 - loss 0.05457535 - time (sec): 20.47 - samples/sec: 2081.48 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-17 16:50:16,289 epoch 4 - iter 264/447 - loss 0.05684864 - time (sec): 24.54 - samples/sec: 2089.74 - lr: 0.000021 - momentum: 0.000000
|
125 |
+
2023-10-17 16:50:20,515 epoch 4 - iter 308/447 - loss 0.05629000 - time (sec): 28.76 - samples/sec: 2067.32 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-10-17 16:50:24,525 epoch 4 - iter 352/447 - loss 0.05515985 - time (sec): 32.77 - samples/sec: 2058.16 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-17 16:50:29,074 epoch 4 - iter 396/447 - loss 0.05406735 - time (sec): 37.32 - samples/sec: 2059.09 - lr: 0.000020 - momentum: 0.000000
|
128 |
+
2023-10-17 16:50:33,156 epoch 4 - iter 440/447 - loss 0.05404876 - time (sec): 41.40 - samples/sec: 2055.53 - lr: 0.000020 - momentum: 0.000000
|
129 |
+
2023-10-17 16:50:33,828 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 16:50:33,829 EPOCH 4 done: loss 0.0537 - lr: 0.000020
|
131 |
+
2023-10-17 16:50:44,774 DEV : loss 0.17118440568447113 - f1-score (micro avg) 0.7738
|
132 |
+
2023-10-17 16:50:44,823 saving best model
|
133 |
+
2023-10-17 16:50:46,179 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 16:50:50,043 epoch 5 - iter 44/447 - loss 0.02823819 - time (sec): 3.86 - samples/sec: 2125.42 - lr: 0.000020 - momentum: 0.000000
|
135 |
+
2023-10-17 16:50:54,046 epoch 5 - iter 88/447 - loss 0.02974272 - time (sec): 7.86 - samples/sec: 2178.10 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-10-17 16:50:58,481 epoch 5 - iter 132/447 - loss 0.03274366 - time (sec): 12.30 - samples/sec: 2173.97 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-10-17 16:51:02,421 epoch 5 - iter 176/447 - loss 0.03126456 - time (sec): 16.24 - samples/sec: 2120.29 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-17 16:51:06,701 epoch 5 - iter 220/447 - loss 0.02862125 - time (sec): 20.52 - samples/sec: 2123.83 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-10-17 16:51:10,991 epoch 5 - iter 264/447 - loss 0.02862398 - time (sec): 24.81 - samples/sec: 2103.31 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-10-17 16:51:15,112 epoch 5 - iter 308/447 - loss 0.02844421 - time (sec): 28.93 - samples/sec: 2083.75 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-17 16:51:19,138 epoch 5 - iter 352/447 - loss 0.02956228 - time (sec): 32.96 - samples/sec: 2071.76 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-10-17 16:51:23,488 epoch 5 - iter 396/447 - loss 0.03284724 - time (sec): 37.31 - samples/sec: 2064.00 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-10-17 16:51:27,485 epoch 5 - iter 440/447 - loss 0.03180610 - time (sec): 41.30 - samples/sec: 2062.28 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-17 16:51:28,153 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 16:51:28,154 EPOCH 5 done: loss 0.0315 - lr: 0.000017
|
146 |
+
2023-10-17 16:51:39,205 DEV : loss 0.17024928331375122 - f1-score (micro avg) 0.7777
|
147 |
+
2023-10-17 16:51:39,267 saving best model
|
148 |
+
2023-10-17 16:51:40,718 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-17 16:51:45,030 epoch 6 - iter 44/447 - loss 0.02203100 - time (sec): 4.31 - samples/sec: 2041.04 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-10-17 16:51:49,781 epoch 6 - iter 88/447 - loss 0.01920241 - time (sec): 9.06 - samples/sec: 2020.90 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-10-17 16:51:54,204 epoch 6 - iter 132/447 - loss 0.02226912 - time (sec): 13.48 - samples/sec: 1979.81 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-17 16:51:58,231 epoch 6 - iter 176/447 - loss 0.02378920 - time (sec): 17.51 - samples/sec: 1959.27 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-10-17 16:52:02,125 epoch 6 - iter 220/447 - loss 0.02333195 - time (sec): 21.40 - samples/sec: 1932.28 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-10-17 16:52:06,311 epoch 6 - iter 264/447 - loss 0.02310408 - time (sec): 25.59 - samples/sec: 1946.29 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-17 16:52:10,568 epoch 6 - iter 308/447 - loss 0.02234226 - time (sec): 29.85 - samples/sec: 1981.40 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-10-17 16:52:14,740 epoch 6 - iter 352/447 - loss 0.02289841 - time (sec): 34.02 - samples/sec: 1984.53 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-10-17 16:52:19,543 epoch 6 - iter 396/447 - loss 0.02189250 - time (sec): 38.82 - samples/sec: 1986.59 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-17 16:52:23,522 epoch 6 - iter 440/447 - loss 0.02187698 - time (sec): 42.80 - samples/sec: 1997.83 - lr: 0.000013 - momentum: 0.000000
|
159 |
+
2023-10-17 16:52:24,166 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-17 16:52:24,167 EPOCH 6 done: loss 0.0230 - lr: 0.000013
|
161 |
+
2023-10-17 16:52:34,982 DEV : loss 0.19983802735805511 - f1-score (micro avg) 0.803
|
162 |
+
2023-10-17 16:52:35,059 saving best model
|
163 |
+
2023-10-17 16:52:36,497 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-17 16:52:40,921 epoch 7 - iter 44/447 - loss 0.00850187 - time (sec): 4.42 - samples/sec: 2092.53 - lr: 0.000013 - momentum: 0.000000
|
165 |
+
2023-10-17 16:52:45,097 epoch 7 - iter 88/447 - loss 0.01184907 - time (sec): 8.60 - samples/sec: 2003.34 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-17 16:52:49,559 epoch 7 - iter 132/447 - loss 0.01008429 - time (sec): 13.06 - samples/sec: 1983.15 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-10-17 16:52:53,577 epoch 7 - iter 176/447 - loss 0.01116324 - time (sec): 17.08 - samples/sec: 1978.81 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-17 16:52:57,658 epoch 7 - iter 220/447 - loss 0.01311415 - time (sec): 21.16 - samples/sec: 1975.15 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-17 16:53:01,902 epoch 7 - iter 264/447 - loss 0.01472328 - time (sec): 25.40 - samples/sec: 1967.29 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-10-17 16:53:06,100 epoch 7 - iter 308/447 - loss 0.01385064 - time (sec): 29.60 - samples/sec: 1977.81 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-17 16:53:10,128 epoch 7 - iter 352/447 - loss 0.01331558 - time (sec): 33.63 - samples/sec: 1999.23 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-17 16:53:14,178 epoch 7 - iter 396/447 - loss 0.01397777 - time (sec): 37.68 - samples/sec: 2010.39 - lr: 0.000010 - momentum: 0.000000
|
173 |
+
2023-10-17 16:53:18,463 epoch 7 - iter 440/447 - loss 0.01368698 - time (sec): 41.96 - samples/sec: 2027.17 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-17 16:53:19,188 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-17 16:53:19,188 EPOCH 7 done: loss 0.0135 - lr: 0.000010
|
176 |
+
2023-10-17 16:53:30,279 DEV : loss 0.20469656586647034 - f1-score (micro avg) 0.7921
|
177 |
+
2023-10-17 16:53:30,335 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-17 16:53:34,480 epoch 8 - iter 44/447 - loss 0.00313666 - time (sec): 4.14 - samples/sec: 2080.39 - lr: 0.000010 - momentum: 0.000000
|
179 |
+
2023-10-17 16:53:38,581 epoch 8 - iter 88/447 - loss 0.00502648 - time (sec): 8.24 - samples/sec: 2049.56 - lr: 0.000009 - momentum: 0.000000
|
180 |
+
2023-10-17 16:53:42,753 epoch 8 - iter 132/447 - loss 0.00740875 - time (sec): 12.42 - samples/sec: 2062.49 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-17 16:53:47,062 epoch 8 - iter 176/447 - loss 0.00859745 - time (sec): 16.73 - samples/sec: 2020.65 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-17 16:53:51,256 epoch 8 - iter 220/447 - loss 0.00798549 - time (sec): 20.92 - samples/sec: 2006.40 - lr: 0.000008 - momentum: 0.000000
|
183 |
+
2023-10-17 16:53:55,572 epoch 8 - iter 264/447 - loss 0.00781959 - time (sec): 25.23 - samples/sec: 2015.40 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-17 16:53:59,928 epoch 8 - iter 308/447 - loss 0.00794785 - time (sec): 29.59 - samples/sec: 2008.36 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-17 16:54:04,317 epoch 8 - iter 352/447 - loss 0.00872736 - time (sec): 33.98 - samples/sec: 1991.41 - lr: 0.000007 - momentum: 0.000000
|
186 |
+
2023-10-17 16:54:08,671 epoch 8 - iter 396/447 - loss 0.00928899 - time (sec): 38.33 - samples/sec: 1991.38 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-17 16:54:13,050 epoch 8 - iter 440/447 - loss 0.00882367 - time (sec): 42.71 - samples/sec: 1995.01 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-17 16:54:13,689 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-10-17 16:54:13,689 EPOCH 8 done: loss 0.0088 - lr: 0.000007
|
190 |
+
2023-10-17 16:54:25,266 DEV : loss 0.21882730722427368 - f1-score (micro avg) 0.8018
|
191 |
+
2023-10-17 16:54:25,341 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-17 16:54:29,957 epoch 9 - iter 44/447 - loss 0.00911349 - time (sec): 4.61 - samples/sec: 1939.98 - lr: 0.000006 - momentum: 0.000000
|
193 |
+
2023-10-17 16:54:34,629 epoch 9 - iter 88/447 - loss 0.00622748 - time (sec): 9.28 - samples/sec: 2044.19 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-17 16:54:38,713 epoch 9 - iter 132/447 - loss 0.00477911 - time (sec): 13.37 - samples/sec: 2033.90 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-17 16:54:43,037 epoch 9 - iter 176/447 - loss 0.00545796 - time (sec): 17.69 - samples/sec: 1994.09 - lr: 0.000005 - momentum: 0.000000
|
196 |
+
2023-10-17 16:54:47,439 epoch 9 - iter 220/447 - loss 0.00514891 - time (sec): 22.09 - samples/sec: 2000.95 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-17 16:54:51,898 epoch 9 - iter 264/447 - loss 0.00530463 - time (sec): 26.55 - samples/sec: 1997.43 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-17 16:54:56,171 epoch 9 - iter 308/447 - loss 0.00519452 - time (sec): 30.83 - samples/sec: 1989.09 - lr: 0.000004 - momentum: 0.000000
|
199 |
+
2023-10-17 16:55:00,230 epoch 9 - iter 352/447 - loss 0.00567824 - time (sec): 34.89 - samples/sec: 1984.82 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-17 16:55:04,392 epoch 9 - iter 396/447 - loss 0.00625861 - time (sec): 39.05 - samples/sec: 1978.66 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-17 16:55:08,577 epoch 9 - iter 440/447 - loss 0.00656770 - time (sec): 43.23 - samples/sec: 1975.09 - lr: 0.000003 - momentum: 0.000000
|
202 |
+
2023-10-17 16:55:09,189 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-17 16:55:09,190 EPOCH 9 done: loss 0.0065 - lr: 0.000003
|
204 |
+
2023-10-17 16:55:20,752 DEV : loss 0.22874712944030762 - f1-score (micro avg) 0.8066
|
205 |
+
2023-10-17 16:55:20,817 saving best model
|
206 |
+
2023-10-17 16:55:22,230 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-17 16:55:26,626 epoch 10 - iter 44/447 - loss 0.00173260 - time (sec): 4.39 - samples/sec: 1946.13 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-17 16:55:30,957 epoch 10 - iter 88/447 - loss 0.00259927 - time (sec): 8.72 - samples/sec: 1922.78 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-17 16:55:34,844 epoch 10 - iter 132/447 - loss 0.00371022 - time (sec): 12.61 - samples/sec: 1951.89 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-17 16:55:39,216 epoch 10 - iter 176/447 - loss 0.00343244 - time (sec): 16.98 - samples/sec: 1973.14 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-17 16:55:43,550 epoch 10 - iter 220/447 - loss 0.00410654 - time (sec): 21.31 - samples/sec: 1982.22 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 16:55:48,037 epoch 10 - iter 264/447 - loss 0.00468622 - time (sec): 25.80 - samples/sec: 1992.41 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 16:55:51,992 epoch 10 - iter 308/447 - loss 0.00492962 - time (sec): 29.76 - samples/sec: 1994.33 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 16:55:56,019 epoch 10 - iter 352/447 - loss 0.00498152 - time (sec): 33.78 - samples/sec: 2022.40 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-17 16:55:59,943 epoch 10 - iter 396/447 - loss 0.00514324 - time (sec): 37.71 - samples/sec: 2033.47 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-17 16:56:04,083 epoch 10 - iter 440/447 - loss 0.00486802 - time (sec): 41.85 - samples/sec: 2035.70 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-17 16:56:04,730 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-17 16:56:04,731 EPOCH 10 done: loss 0.0048 - lr: 0.000000
|
219 |
+
2023-10-17 16:56:15,689 DEV : loss 0.23447194695472717 - f1-score (micro avg) 0.805
|
220 |
+
2023-10-17 16:56:16,295 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-17 16:56:16,298 Loading model from best epoch ...
|
222 |
+
2023-10-17 16:56:19,028 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
223 |
+
2023-10-17 16:56:25,007
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.7627
|
226 |
+
- F-score (macro) 0.6747
|
227 |
+
- Accuracy 0.6391
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
loc 0.8617 0.8574 0.8595 596
|
233 |
+
pers 0.7067 0.7958 0.7486 333
|
234 |
+
org 0.4667 0.5833 0.5185 132
|
235 |
+
prod 0.5965 0.5152 0.5528 66
|
236 |
+
time 0.6939 0.6939 0.6939 49
|
237 |
+
|
238 |
+
micro avg 0.7433 0.7832 0.7627 1176
|
239 |
+
macro avg 0.6651 0.6891 0.6747 1176
|
240 |
+
weighted avg 0.7516 0.7832 0.7657 1176
|
241 |
+
|
242 |
+
2023-10-17 16:56:25,007 ----------------------------------------------------------------------------------------------------
|