Upload meta_init_context.py
Browse files- meta_init_context.py +99 -0
meta_init_context.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
from typing import Any, Callable, Optional
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
@contextmanager
|
7 |
+
def init_empty_weights(include_buffers: bool=False):
|
8 |
+
"""Meta initialization context manager.
|
9 |
+
|
10 |
+
A context manager under which models are initialized with all parameters
|
11 |
+
on the meta device, therefore creating an empty model. Useful when just
|
12 |
+
initializing the model would blow the available RAM.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
16 |
+
not to also put all buffers on the meta device while initializing.
|
17 |
+
|
18 |
+
Example:
|
19 |
+
```python
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
# Initialize a model with 100 billions parameters in no time and without using any RAM.
|
23 |
+
with init_empty_weights():
|
24 |
+
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
|
25 |
+
```
|
26 |
+
|
27 |
+
<Tip warning={true}>
|
28 |
+
|
29 |
+
Any model created under this context manager has no weights. As such you can't do something like
|
30 |
+
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
|
31 |
+
|
32 |
+
</Tip>
|
33 |
+
"""
|
34 |
+
with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
|
35 |
+
yield f
|
36 |
+
|
37 |
+
@contextmanager
|
38 |
+
def init_on_device(device: torch.device, include_buffers: bool=False):
|
39 |
+
"""Device initialization context manager.
|
40 |
+
|
41 |
+
A context manager under which models are initialized with all parameters
|
42 |
+
on the specified device.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
device (`torch.device`): Device to initialize all parameters on.
|
46 |
+
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
47 |
+
not to also put all buffers on the meta device while initializing.
|
48 |
+
|
49 |
+
Example:
|
50 |
+
```python
|
51 |
+
import torch.nn as nn
|
52 |
+
|
53 |
+
with init_on_device(device=torch.device("cuda")):
|
54 |
+
tst = nn.Liner(100, 100) # on `cuda` device
|
55 |
+
```
|
56 |
+
"""
|
57 |
+
old_register_parameter = nn.Module.register_parameter
|
58 |
+
if include_buffers:
|
59 |
+
old_register_buffer = nn.Module.register_buffer
|
60 |
+
|
61 |
+
def register_empty_parameter(self: torch.nn.Module, name: str, param: Optional[torch.nn.Parameter]):
|
62 |
+
old_register_parameter(self, name, param)
|
63 |
+
if param is not None:
|
64 |
+
parameter = self._parameters[name]
|
65 |
+
assert parameter is not None
|
66 |
+
param_cls = type(parameter)
|
67 |
+
kwargs = parameter.__dict__
|
68 |
+
self._parameters[name] = param_cls(parameter.to(device), **kwargs)
|
69 |
+
|
70 |
+
def register_empty_buffer(self: torch.nn.Module, name: str, tensor: Optional[torch.Tensor], persistent: bool=True):
|
71 |
+
old_register_buffer(self, name, tensor, persistent=persistent)
|
72 |
+
if tensor is not None:
|
73 |
+
named_buffer = self._buffers[name]
|
74 |
+
assert named_buffer is not None
|
75 |
+
self._buffers[name] = named_buffer.to(device)
|
76 |
+
if include_buffers:
|
77 |
+
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
|
78 |
+
else:
|
79 |
+
tensor_constructors_to_patch = {}
|
80 |
+
|
81 |
+
def patch_tensor_constructor(fn: Callable):
|
82 |
+
|
83 |
+
def wrapper(*args: Any, **kwargs: Any):
|
84 |
+
kwargs['device'] = device
|
85 |
+
return fn(*args, **kwargs)
|
86 |
+
return wrapper
|
87 |
+
try:
|
88 |
+
nn.Module.register_parameter = register_empty_parameter
|
89 |
+
if include_buffers:
|
90 |
+
nn.Module.register_buffer = register_empty_buffer
|
91 |
+
for torch_function_name in tensor_constructors_to_patch.keys():
|
92 |
+
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
93 |
+
yield
|
94 |
+
finally:
|
95 |
+
nn.Module.register_parameter = old_register_parameter
|
96 |
+
if include_buffers:
|
97 |
+
nn.Module.register_buffer = old_register_buffer
|
98 |
+
for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
|
99 |
+
setattr(torch, torch_function_name, old_torch_function)
|