hojzas commited on
Commit
3b3d5bb
1 Parent(s): c195e0d

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - hojzas/proj4-label
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: " perms = all_permutations_substrings(string)\n \nreturn perms.intersection(words)"
14
+ - text: ' perms = all_permutations_substrings(string)
15
+
16
+ return {i for i in words if i in perms}'
17
+ - text: ' perms = all_permutations_substrings(string)
18
+
19
+ return {word for word in words if hash(word) in {hash(looking) for looking in
20
+ perms}}'
21
+ - text: ' perms = all_permutations_substrings(string)
22
+
23
+ res = [x for x in list(perms) + words if x in list(perms) and x in words]
24
+
25
+ return set(res)'
26
+ - text: " perms = all_permutations_substrings(string)\n \nif set(words) & set(perms):\n\
27
+ \ res = (set(words) & set(perms))"
28
+ pipeline_tag: text-classification
29
+ inference: true
30
+ co2_eq_emissions:
31
+ emissions: 0.304162146960255
32
+ source: codecarbon
33
+ training_type: fine-tuning
34
+ on_cloud: false
35
+ cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
36
+ ram_total_size: 251.49160385131836
37
+ hours_used: 0.006
38
+ base_model: sentence-transformers/all-mpnet-base-v2
39
+ model-index:
40
+ - name: SetFit with sentence-transformers/all-mpnet-base-v2
41
+ results:
42
+ - task:
43
+ type: text-classification
44
+ name: Text Classification
45
+ dataset:
46
+ name: hojzas/proj4-label
47
+ type: hojzas/proj4-label
48
+ split: test
49
+ metrics:
50
+ - type: accuracy
51
+ value: 1.0
52
+ name: Accuracy
53
+ ---
54
+
55
+ # SetFit with sentence-transformers/all-mpnet-base-v2
56
+
57
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [hojzas/proj4-label](https://huggingface.co/datasets/hojzas/proj4-label) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
58
+
59
+ The model has been trained using an efficient few-shot learning technique that involves:
60
+
61
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
62
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
63
+
64
+ ## Model Details
65
+
66
+ ### Model Description
67
+ - **Model Type:** SetFit
68
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
69
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
70
+ - **Maximum Sequence Length:** 384 tokens
71
+ - **Number of Classes:** 2 classes
72
+ - **Training Dataset:** [hojzas/proj4-label](https://huggingface.co/datasets/hojzas/proj4-label)
73
+ <!-- - **Language:** Unknown -->
74
+ <!-- - **License:** Unknown -->
75
+
76
+ ### Model Sources
77
+
78
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
79
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
80
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
81
+
82
+ ### Model Labels
83
+ | Label | Examples |
84
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
85
+ | 0 | <ul><li>" perms = all_permutations_substrings(string)\\n return set(''.join(perm) for word in words for perm in perms if word == perm)"</li><li>' perms = all_permutations_substrings(string)\\n out = set()\\n for w in words:\\n for s in perms:\\n if w == s:\\n out.add(w)\\n return out'</li><li>' perms = all_permutations_substrings(string)\\n return set(word for word in words if word in perms)'</li></ul> |
86
+ | 1 | <ul><li>' perms = all_permutations_substrings(string)\\n return perms.intersection(words)'</li><li>' perms = all_permutations_substrings(string)\\n return set.intersection(perms,words)'</li><li>' perms = all_permutations_substrings(string)\\n return set(perms).intersection(words)'</li></ul> |
87
+
88
+ ## Evaluation
89
+
90
+ ### Metrics
91
+ | Label | Accuracy |
92
+ |:--------|:---------|
93
+ | **all** | 1.0 |
94
+
95
+ ## Uses
96
+
97
+ ### Direct Use for Inference
98
+
99
+ First install the SetFit library:
100
+
101
+ ```bash
102
+ pip install setfit
103
+ ```
104
+
105
+ Then you can load this model and run inference.
106
+
107
+ ```python
108
+ from setfit import SetFitModel
109
+
110
+ # Download from the 🤗 Hub
111
+ model = SetFitModel.from_pretrained("hojzas/setfit-proj4-label")
112
+ # Run inference
113
+ preds = model(" perms = all_permutations_substrings(string)
114
+
115
+ return perms.intersection(words)")
116
+ ```
117
+
118
+ <!--
119
+ ### Downstream Use
120
+
121
+ *List how someone could finetune this model on their own dataset.*
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Set Metrics
145
+ | Training set | Min | Median | Max |
146
+ |:-------------|:----|:--------|:----|
147
+ | Word count | 12 | 29.1633 | 140 |
148
+
149
+ | Label | Training Sample Count |
150
+ |:------|:----------------------|
151
+ | 0 | 35 |
152
+ | 1 | 14 |
153
+
154
+ ### Training Hyperparameters
155
+ - batch_size: (16, 16)
156
+ - num_epochs: (1, 1)
157
+ - max_steps: -1
158
+ - sampling_strategy: oversampling
159
+ - num_iterations: 20
160
+ - body_learning_rate: (2e-05, 2e-05)
161
+ - head_learning_rate: 2e-05
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: False
167
+ - warmup_proportion: 0.1
168
+ - seed: 42
169
+ - eval_max_steps: -1
170
+ - load_best_model_at_end: False
171
+
172
+ ### Training Results
173
+ | Epoch | Step | Training Loss | Validation Loss |
174
+ |:------:|:----:|:-------------:|:---------------:|
175
+ | 0.0081 | 1 | 0.3668 | - |
176
+ | 0.4065 | 50 | 0.0048 | - |
177
+ | 0.8130 | 100 | 0.0014 | - |
178
+
179
+ ### Environmental Impact
180
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
181
+ - **Carbon Emitted**: 0.000 kg of CO2
182
+ - **Hours Used**: 0.006 hours
183
+
184
+ ### Training Hardware
185
+ - **On Cloud**: No
186
+ - **GPU Model**: No GPU used
187
+ - **CPU Model**: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
188
+ - **RAM Size**: 251.49 GB
189
+
190
+ ### Framework Versions
191
+ - Python: 3.10.12
192
+ - SetFit: 1.0.3
193
+ - Sentence Transformers: 2.2.2
194
+ - Transformers: 4.36.1
195
+ - PyTorch: 2.1.2+cu121
196
+ - Datasets: 2.14.7
197
+ - Tokenizers: 0.15.1
198
+
199
+ ## Citation
200
+
201
+ ### BibTeX
202
+ ```bibtex
203
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
204
+ doi = {10.48550/ARXIV.2209.11055},
205
+ url = {https://arxiv.org/abs/2209.11055},
206
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
207
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
208
+ title = {Efficient Few-Shot Learning Without Prompts},
209
+ publisher = {arXiv},
210
+ year = {2022},
211
+ copyright = {Creative Commons Attribution 4.0 International}
212
+ }
213
+ ```
214
+
215
+ <!--
216
+ ## Glossary
217
+
218
+ *Clearly define terms in order to be accessible across audiences.*
219
+ -->
220
+
221
+ <!--
222
+ ## Model Card Authors
223
+
224
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
225
+ -->
226
+
227
+ <!--
228
+ ## Model Card Contact
229
+
230
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
231
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/xkrejc70/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.36.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ab3df9acaad6d90c525b3ca38c047da5c1242d0a536e8e4880b23eca64d5dd5
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b07954c6c0fe1dcc720e6a0865e6e520e3b51f71250dc6221d234bc5c2f45125
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 512,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff