|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from typing import Dict, Any, List |
|
import logging |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
class EndpointHandler: |
|
def __init__(self, model_dir: str = None): |
|
self.model_dir = model_dir if model_dir else "homer7676/FrierenChatbotV1" |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
logger.info(f"初始化 EndpointHandler,使用設備: {self.device}") |
|
|
|
|
|
try: |
|
logger.info("開始載入 tokenizer 和模型") |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
self.model_dir, |
|
trust_remote_code=True |
|
) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
self.model_dir, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 |
|
).to(self.device) |
|
self.model.eval() |
|
logger.info("模型和 tokenizer 載入完成") |
|
|
|
except Exception as e: |
|
logger.error(f"初始化錯誤: {str(e)}") |
|
raise |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, str]]: |
|
try: |
|
|
|
if self.tokenizer is None or self.model is None: |
|
raise RuntimeError("Tokenizer or model not initialized") |
|
|
|
inputs = self.preprocess(data) |
|
outputs = self.inference(inputs) |
|
return [outputs] |
|
except Exception as e: |
|
logger.error(f"處理過程錯誤: {str(e)}") |
|
return [{"error": str(e)}] |
|
|
|
def initialize(self, context): |
|
"""確保模型已初始化""" |
|
if self.tokenizer is None or self.model is None: |
|
logger.info("在 initialize 中重新初始化模型") |
|
try: |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
self.model_dir, |
|
trust_remote_code=True |
|
) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
self.model_dir, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 |
|
).to(self.device) |
|
self.model.eval() |
|
logger.info("模型重新初始化完成") |
|
except Exception as e: |
|
logger.error(f"模型重新初始化錯誤: {str(e)}") |
|
raise |
|
|
|
def inference(self, inputs: Dict[str, Any]) -> Dict[str, str]: |
|
logger.info("開始執行推理") |
|
try: |
|
|
|
if isinstance(inputs, str): |
|
try: |
|
import json |
|
inputs = json.loads(inputs) |
|
except json.JSONDecodeError: |
|
inputs = {"message": inputs} |
|
|
|
|
|
if isinstance(inputs, dict) and "inputs" in inputs: |
|
inputs = inputs["inputs"] |
|
if isinstance(inputs, str): |
|
try: |
|
import json |
|
inputs = json.loads(inputs) |
|
except json.JSONDecodeError: |
|
inputs = {"message": inputs} |
|
|
|
message = inputs.get("message", "") |
|
context = inputs.get("context", "") |
|
logger.info(f"處理消息: {message}, 上下文: {context}") |
|
|
|
prompt = f"""你是芙莉蓮,需要遵守以下規則回答: |
|
1. 身份設定: |
|
- 千年精靈魔法師 |
|
- 態度溫柔但帶著些許嘲諷 |
|
- 說話優雅且有距離感 |
|
2. 重要關係: |
|
- 弗蘭梅是我的師傅 |
|
- 費倫是我的學生 |
|
- 欣梅爾是我的摯友 |
|
- 海塔是我的故友 |
|
3. 回答規則: |
|
- 使用繁體中文 |
|
- 必須提供具體詳細的內容 |
|
- 保持回答的連貫性和完整性 |
|
相關資訊:{context} |
|
用戶:{message} |
|
芙莉蓮:""" |
|
|
|
|
|
if self.tokenizer is None: |
|
raise RuntimeError("Tokenizer not initialized") |
|
|
|
tokens = self.tokenizer( |
|
prompt, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=2048 |
|
).to(self.device) |
|
|
|
with torch.no_grad(): |
|
outputs = self.model.generate( |
|
**tokens, |
|
max_new_tokens=150, |
|
temperature=0.7, |
|
top_p=0.9, |
|
top_k=50, |
|
do_sample=True, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
eos_token_id=self.tokenizer.eos_token_id |
|
) |
|
|
|
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
response = response.split("芙莉蓮:")[-1].strip() |
|
|
|
if not response: |
|
response = "唔...讓我思考一下如何回答你的問題。" |
|
|
|
logger.info(f"生成回應: {response}") |
|
return {"generated_text": response} |
|
|
|
except Exception as e: |
|
logger.error(f"推理過程錯誤: {str(e)}") |
|
return {"error": str(e)} |
|
|
|
def preprocess(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
logger.info(f"預處理輸入數據: {data}") |
|
return data |