--- license: cc-by-4.0 base_model: hon9kon9ize/bert-large-cantonese tags: - generated_from_trainer metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max model-index: - name: Cantonese Semantic Textual Similarity BERT based on hon9kon9ize/bert-large-cantonese-sts results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.8195601142712411 - type: spearman_cosine value: 0.8107244990045813 - type: pearson_manhattan value: 0.8227349515965701 - type: spearman_manhattan value: 0.8106624105549446 - type: pearson_euclidean value: 0.8224444134336916 - type: spearman_euclidean value: 0.810580167108645 - type: pearson_dot value: 0.8197330940854836 - type: spearman_dot value: 0.8107833210821748 --- # bert-large-cantonese-sts This model is a fine-tuned version of [hon9kon9ize/bert-large-cantonese](https://huggingface.co/hon9kon9ize/bert-large-cantonese) on the [hon9kon9ize/yue-sts](https://huggingface.co/datasets/hon9kon9ize/yue-sts) dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.43.3 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.19.1