Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
---
|
7 |
+
# PubMedBERT Embeddings Matryoshka - ONNX - O4
|
8 |
+
|
9 |
+
O4 optimized weights of [`NeuML/pubmedbert-base-embeddings-matryoshka`](https://huggingface.co/NeuML/pubmedbert-base-embeddings-matryoshka).
|
10 |
+
|
11 |
+
```python
|
12 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
13 |
+
from transformers import AutoTokenizer
|
14 |
+
import torch
|
15 |
+
|
16 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
17 |
+
def meanpooling(output, mask):
|
18 |
+
embeddings = output[0] # First element of model_output contains all token embeddings
|
19 |
+
mask = mask.unsqueeze(-1).expand(embeddings.size()).float()
|
20 |
+
return torch.sum(embeddings * mask, 1) / torch.clamp(mask.sum(1), min=1e-9)
|
21 |
+
|
22 |
+
# Sentences we want sentence embeddings for
|
23 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
24 |
+
|
25 |
+
model = ORTModelForFeatureExtraction.from_pretrained("hooman650/pubmedbert-base-embeddings-matryoshka-onnx-04",provider="CUDAExecutionProvider")
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained("hooman650/pubmedbert-base-embeddings-matryoshka-onnx-04")
|
27 |
+
|
28 |
+
# Tokenize sentences
|
29 |
+
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
30 |
+
|
31 |
+
# Compute token embeddings
|
32 |
+
with torch.no_grad():
|
33 |
+
output = model(**inputs)
|
34 |
+
|
35 |
+
# Perform pooling. In this case, mean pooling.
|
36 |
+
embeddings = meanpooling(output, inputs['attention_mask'])
|
37 |
+
|
38 |
+
# Requested matryoshka dimensions
|
39 |
+
dimensions = 256
|
40 |
+
|
41 |
+
print("Sentence embeddings:")
|
42 |
+
print(embeddings[:, :dimensions])
|