--- license: apache-2.0 language: - en library_name: transformers --- # PubMedBERT Embeddings Matryoshka - ONNX - O4 O4 optimized weights of [`NeuML/pubmedbert-base-embeddings-matryoshka`](https://huggingface.co/NeuML/pubmedbert-base-embeddings-matryoshka). ## Usage ```python from optimum.onnxruntime import ORTModelForFeatureExtraction from transformers import AutoTokenizer import torch # Mean Pooling - Take attention mask into account for correct averaging def meanpooling(output, mask): embeddings = output[0] # First element of model_output contains all token embeddings mask = mask.unsqueeze(-1).expand(embeddings.size()).float() return torch.sum(embeddings * mask, 1) / torch.clamp(mask.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] model = ORTModelForFeatureExtraction.from_pretrained("hooman650/pubmedbert-base-embeddings-matryoshka-onnx-04",provider="CUDAExecutionProvider") tokenizer = AutoTokenizer.from_pretrained("hooman650/pubmedbert-base-embeddings-matryoshka-onnx-04") # Tokenize sentences inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("cude") # if on GPU # Compute token embeddings with torch.no_grad(): output = model(**inputs) # Perform pooling. In this case, mean pooling. embeddings = meanpooling(output, inputs['attention_mask']) # Requested matryoshka dimensions dimensions = 256 print("Sentence embeddings:") print(embeddings[:, :dimensions]) ```