houyu0930 commited on
Commit
69c6116
1 Parent(s): 2068256

Upload DemoRetrieverQAPipeline

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
bloom_retriever.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from transformers import FeatureExtractionPipeline
4
+ from scipy.spatial.distance import cdist
5
+
6
+ class DemoRetrieverQAPipeline(FeatureExtractionPipeline):
7
+ def preprocess(self, inputs, **tokenize_kwargs):
8
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
9
+ inputs = inputs.to(device)
10
+ self.query = inputs['question']
11
+ self.contexts = inputs['contexts']
12
+ return super().preprocess(self.query)
13
+
14
+ def _infer(self, inputs, return_tensors=False):
15
+ model_inputs = self.tokenizer(inputs, return_tensors=self.framework)
16
+ model_outputs = self.model(**model_inputs)
17
+ if return_tensors:
18
+ outputs = model_outputs[0]
19
+ if self.framework == "pt":
20
+ outputs = model_outputs[0].tolist()
21
+ elif self.framework == "tf":
22
+ outputs = model_outputs[0].numpy().tolist()
23
+
24
+ return [[ii[0][-1]] for ii in outputs]
25
+
26
+ def postprocess(self, model_outputs, return_tensors=False):
27
+ emb_contexts = np.concatenate([self._infer(context, return_tensors) for context in self.contexts], axis=0)
28
+ emb_queries = np.concatenate([self._infer(self.query, return_tensors)], axis=0)
29
+ # Important: take l2 distance!
30
+ dist = cdist(emb_queries, emb_contexts, 'euclidean')
31
+ top_k = lambda x: [
32
+ [self.contexts[qq] for qq in ii]
33
+ for ii in dist.argsort(axis=-1)[:,:x]
34
+ ]
35
+
36
+ # top 5 nearest contexts for each queries
37
+ top_contexts = top_k(1)
38
+ return {"context": top_contexts[0][0]}
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cmarkea/bloomz-3b-retriever",
3
+ "apply_residual_connection_post_layernorm": false,
4
+ "architectures": [
5
+ "BloomModel"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "attention_softmax_in_fp32": true,
9
+ "bias_dropout_fusion": true,
10
+ "bos_token_id": 1,
11
+ "custom_pipelines": {
12
+ "demo-retriever-qa": {
13
+ "impl": "bloom_retriever.DemoRetrieverQAPipeline",
14
+ "pt": [
15
+ "AutoModel"
16
+ ],
17
+ "tf": [
18
+ "TFAutoModel"
19
+ ]
20
+ }
21
+ },
22
+ "eos_token_id": 2,
23
+ "hidden_dropout": 0.0,
24
+ "hidden_size": 2560,
25
+ "initializer_range": 0.02,
26
+ "layer_norm_epsilon": 1e-05,
27
+ "masked_softmax_fusion": true,
28
+ "model_type": "bloom",
29
+ "n_head": 32,
30
+ "n_inner": null,
31
+ "n_layer": 30,
32
+ "offset_alibi": 100,
33
+ "pad_token_id": 3,
34
+ "pretraining_tp": 4,
35
+ "skip_bias_add": true,
36
+ "skip_bias_add_qkv": false,
37
+ "slow_but_exact": false,
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.40.2",
40
+ "unk_token_id": 0,
41
+ "use_cache": true,
42
+ "vocab_size": 250880
43
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:077a11d06d66e49ee3d55275050cb97dd966108ca1fd534cdc7395ff9002745a
3
+ size 4981821360
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3217621b737560e714ebd2513f3b3fbd5bdc93c27670118635a2e6b71eec46b9
3
+ size 4930416288
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c579a72a62b347a1e6d3f05163a4c3e4db8032534f33a1d693d37d8acf06f94
3
+ size 2098030608
model.safetensors.index.json ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 12010229760
4
+ },
5
+ "weight_map": {
6
+ "h.0.input_layernorm.bias": "model-00001-of-00003.safetensors",
7
+ "h.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
8
+ "h.0.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
9
+ "h.0.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
10
+ "h.0.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
11
+ "h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
12
+ "h.0.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
13
+ "h.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
14
+ "h.0.self_attention.dense.bias": "model-00001-of-00003.safetensors",
15
+ "h.0.self_attention.dense.weight": "model-00001-of-00003.safetensors",
16
+ "h.0.self_attention.query_key_value.bias": "model-00001-of-00003.safetensors",
17
+ "h.0.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
18
+ "h.1.input_layernorm.bias": "model-00001-of-00003.safetensors",
19
+ "h.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
20
+ "h.1.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
21
+ "h.1.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
22
+ "h.1.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
23
+ "h.1.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
24
+ "h.1.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
25
+ "h.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
26
+ "h.1.self_attention.dense.bias": "model-00001-of-00003.safetensors",
27
+ "h.1.self_attention.dense.weight": "model-00001-of-00003.safetensors",
28
+ "h.1.self_attention.query_key_value.bias": "model-00001-of-00003.safetensors",
29
+ "h.1.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
30
+ "h.10.input_layernorm.bias": "model-00002-of-00003.safetensors",
31
+ "h.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
32
+ "h.10.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
33
+ "h.10.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
34
+ "h.10.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
35
+ "h.10.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
36
+ "h.10.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
37
+ "h.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
38
+ "h.10.self_attention.dense.bias": "model-00002-of-00003.safetensors",
39
+ "h.10.self_attention.dense.weight": "model-00002-of-00003.safetensors",
40
+ "h.10.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
41
+ "h.10.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
42
+ "h.11.input_layernorm.bias": "model-00002-of-00003.safetensors",
43
+ "h.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
44
+ "h.11.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
45
+ "h.11.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
46
+ "h.11.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
47
+ "h.11.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
48
+ "h.11.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
49
+ "h.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
50
+ "h.11.self_attention.dense.bias": "model-00002-of-00003.safetensors",
51
+ "h.11.self_attention.dense.weight": "model-00002-of-00003.safetensors",
52
+ "h.11.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
53
+ "h.11.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
54
+ "h.12.input_layernorm.bias": "model-00002-of-00003.safetensors",
55
+ "h.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
56
+ "h.12.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
57
+ "h.12.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
58
+ "h.12.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
59
+ "h.12.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
60
+ "h.12.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
61
+ "h.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
62
+ "h.12.self_attention.dense.bias": "model-00002-of-00003.safetensors",
63
+ "h.12.self_attention.dense.weight": "model-00002-of-00003.safetensors",
64
+ "h.12.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
65
+ "h.12.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
66
+ "h.13.input_layernorm.bias": "model-00002-of-00003.safetensors",
67
+ "h.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
68
+ "h.13.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
69
+ "h.13.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
70
+ "h.13.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
71
+ "h.13.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
72
+ "h.13.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
73
+ "h.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
74
+ "h.13.self_attention.dense.bias": "model-00002-of-00003.safetensors",
75
+ "h.13.self_attention.dense.weight": "model-00002-of-00003.safetensors",
76
+ "h.13.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
77
+ "h.13.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
78
+ "h.14.input_layernorm.bias": "model-00002-of-00003.safetensors",
79
+ "h.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
80
+ "h.14.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
81
+ "h.14.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
82
+ "h.14.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
83
+ "h.14.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
84
+ "h.14.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
85
+ "h.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
86
+ "h.14.self_attention.dense.bias": "model-00002-of-00003.safetensors",
87
+ "h.14.self_attention.dense.weight": "model-00002-of-00003.safetensors",
88
+ "h.14.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
89
+ "h.14.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
90
+ "h.15.input_layernorm.bias": "model-00002-of-00003.safetensors",
91
+ "h.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
92
+ "h.15.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
93
+ "h.15.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
94
+ "h.15.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
95
+ "h.15.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
96
+ "h.15.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
97
+ "h.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
98
+ "h.15.self_attention.dense.bias": "model-00002-of-00003.safetensors",
99
+ "h.15.self_attention.dense.weight": "model-00002-of-00003.safetensors",
100
+ "h.15.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
101
+ "h.15.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
102
+ "h.16.input_layernorm.bias": "model-00002-of-00003.safetensors",
103
+ "h.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
104
+ "h.16.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
105
+ "h.16.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
106
+ "h.16.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
107
+ "h.16.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
108
+ "h.16.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
109
+ "h.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
110
+ "h.16.self_attention.dense.bias": "model-00002-of-00003.safetensors",
111
+ "h.16.self_attention.dense.weight": "model-00002-of-00003.safetensors",
112
+ "h.16.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
113
+ "h.16.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
114
+ "h.17.input_layernorm.bias": "model-00002-of-00003.safetensors",
115
+ "h.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
116
+ "h.17.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
117
+ "h.17.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
118
+ "h.17.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
119
+ "h.17.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
120
+ "h.17.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
121
+ "h.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
122
+ "h.17.self_attention.dense.bias": "model-00002-of-00003.safetensors",
123
+ "h.17.self_attention.dense.weight": "model-00002-of-00003.safetensors",
124
+ "h.17.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
125
+ "h.17.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
126
+ "h.18.input_layernorm.bias": "model-00002-of-00003.safetensors",
127
+ "h.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
128
+ "h.18.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
129
+ "h.18.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
130
+ "h.18.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
131
+ "h.18.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
132
+ "h.18.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
133
+ "h.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
134
+ "h.18.self_attention.dense.bias": "model-00002-of-00003.safetensors",
135
+ "h.18.self_attention.dense.weight": "model-00002-of-00003.safetensors",
136
+ "h.18.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
137
+ "h.18.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
138
+ "h.19.input_layernorm.bias": "model-00002-of-00003.safetensors",
139
+ "h.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
140
+ "h.19.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
141
+ "h.19.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
142
+ "h.19.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
143
+ "h.19.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
144
+ "h.19.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
145
+ "h.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
146
+ "h.19.self_attention.dense.bias": "model-00002-of-00003.safetensors",
147
+ "h.19.self_attention.dense.weight": "model-00002-of-00003.safetensors",
148
+ "h.19.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
149
+ "h.19.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
150
+ "h.2.input_layernorm.bias": "model-00001-of-00003.safetensors",
151
+ "h.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
152
+ "h.2.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
153
+ "h.2.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
154
+ "h.2.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
155
+ "h.2.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
156
+ "h.2.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
157
+ "h.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
158
+ "h.2.self_attention.dense.bias": "model-00001-of-00003.safetensors",
159
+ "h.2.self_attention.dense.weight": "model-00001-of-00003.safetensors",
160
+ "h.2.self_attention.query_key_value.bias": "model-00001-of-00003.safetensors",
161
+ "h.2.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
162
+ "h.20.input_layernorm.bias": "model-00002-of-00003.safetensors",
163
+ "h.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
164
+ "h.20.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
165
+ "h.20.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
166
+ "h.20.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
167
+ "h.20.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
168
+ "h.20.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
169
+ "h.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
170
+ "h.20.self_attention.dense.bias": "model-00002-of-00003.safetensors",
171
+ "h.20.self_attention.dense.weight": "model-00002-of-00003.safetensors",
172
+ "h.20.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
173
+ "h.20.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
174
+ "h.21.input_layernorm.bias": "model-00002-of-00003.safetensors",
175
+ "h.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
176
+ "h.21.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
177
+ "h.21.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
178
+ "h.21.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
179
+ "h.21.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
180
+ "h.21.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
181
+ "h.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
182
+ "h.21.self_attention.dense.bias": "model-00002-of-00003.safetensors",
183
+ "h.21.self_attention.dense.weight": "model-00002-of-00003.safetensors",
184
+ "h.21.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
185
+ "h.21.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
186
+ "h.22.input_layernorm.bias": "model-00002-of-00003.safetensors",
187
+ "h.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
188
+ "h.22.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
189
+ "h.22.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
190
+ "h.22.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
191
+ "h.22.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
192
+ "h.22.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
193
+ "h.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
194
+ "h.22.self_attention.dense.bias": "model-00002-of-00003.safetensors",
195
+ "h.22.self_attention.dense.weight": "model-00002-of-00003.safetensors",
196
+ "h.22.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
197
+ "h.22.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
198
+ "h.23.input_layernorm.bias": "model-00002-of-00003.safetensors",
199
+ "h.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
200
+ "h.23.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
201
+ "h.23.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
202
+ "h.23.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
203
+ "h.23.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
204
+ "h.23.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
205
+ "h.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
206
+ "h.23.self_attention.dense.bias": "model-00002-of-00003.safetensors",
207
+ "h.23.self_attention.dense.weight": "model-00002-of-00003.safetensors",
208
+ "h.23.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
209
+ "h.23.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
210
+ "h.24.input_layernorm.bias": "model-00003-of-00003.safetensors",
211
+ "h.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
212
+ "h.24.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
213
+ "h.24.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
214
+ "h.24.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
215
+ "h.24.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
216
+ "h.24.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
217
+ "h.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
218
+ "h.24.self_attention.dense.bias": "model-00003-of-00003.safetensors",
219
+ "h.24.self_attention.dense.weight": "model-00003-of-00003.safetensors",
220
+ "h.24.self_attention.query_key_value.bias": "model-00003-of-00003.safetensors",
221
+ "h.24.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
222
+ "h.25.input_layernorm.bias": "model-00003-of-00003.safetensors",
223
+ "h.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
224
+ "h.25.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
225
+ "h.25.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
226
+ "h.25.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
227
+ "h.25.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
228
+ "h.25.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
229
+ "h.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
230
+ "h.25.self_attention.dense.bias": "model-00003-of-00003.safetensors",
231
+ "h.25.self_attention.dense.weight": "model-00003-of-00003.safetensors",
232
+ "h.25.self_attention.query_key_value.bias": "model-00003-of-00003.safetensors",
233
+ "h.25.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
234
+ "h.26.input_layernorm.bias": "model-00003-of-00003.safetensors",
235
+ "h.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
236
+ "h.26.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
237
+ "h.26.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
238
+ "h.26.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
239
+ "h.26.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
240
+ "h.26.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
241
+ "h.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
242
+ "h.26.self_attention.dense.bias": "model-00003-of-00003.safetensors",
243
+ "h.26.self_attention.dense.weight": "model-00003-of-00003.safetensors",
244
+ "h.26.self_attention.query_key_value.bias": "model-00003-of-00003.safetensors",
245
+ "h.26.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
246
+ "h.27.input_layernorm.bias": "model-00003-of-00003.safetensors",
247
+ "h.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
248
+ "h.27.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
249
+ "h.27.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
250
+ "h.27.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
251
+ "h.27.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
252
+ "h.27.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
253
+ "h.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
254
+ "h.27.self_attention.dense.bias": "model-00003-of-00003.safetensors",
255
+ "h.27.self_attention.dense.weight": "model-00003-of-00003.safetensors",
256
+ "h.27.self_attention.query_key_value.bias": "model-00003-of-00003.safetensors",
257
+ "h.27.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
258
+ "h.28.input_layernorm.bias": "model-00003-of-00003.safetensors",
259
+ "h.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
260
+ "h.28.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
261
+ "h.28.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
262
+ "h.28.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
263
+ "h.28.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
264
+ "h.28.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
265
+ "h.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
266
+ "h.28.self_attention.dense.bias": "model-00003-of-00003.safetensors",
267
+ "h.28.self_attention.dense.weight": "model-00003-of-00003.safetensors",
268
+ "h.28.self_attention.query_key_value.bias": "model-00003-of-00003.safetensors",
269
+ "h.28.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
270
+ "h.29.input_layernorm.bias": "model-00003-of-00003.safetensors",
271
+ "h.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
272
+ "h.29.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
273
+ "h.29.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
274
+ "h.29.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
275
+ "h.29.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
276
+ "h.29.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
277
+ "h.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
278
+ "h.29.self_attention.dense.bias": "model-00003-of-00003.safetensors",
279
+ "h.29.self_attention.dense.weight": "model-00003-of-00003.safetensors",
280
+ "h.29.self_attention.query_key_value.bias": "model-00003-of-00003.safetensors",
281
+ "h.29.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
282
+ "h.3.input_layernorm.bias": "model-00001-of-00003.safetensors",
283
+ "h.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
284
+ "h.3.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
285
+ "h.3.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
286
+ "h.3.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
287
+ "h.3.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
288
+ "h.3.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
289
+ "h.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
290
+ "h.3.self_attention.dense.bias": "model-00001-of-00003.safetensors",
291
+ "h.3.self_attention.dense.weight": "model-00001-of-00003.safetensors",
292
+ "h.3.self_attention.query_key_value.bias": "model-00001-of-00003.safetensors",
293
+ "h.3.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
294
+ "h.4.input_layernorm.bias": "model-00001-of-00003.safetensors",
295
+ "h.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
296
+ "h.4.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
297
+ "h.4.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
298
+ "h.4.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
299
+ "h.4.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
300
+ "h.4.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
301
+ "h.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
302
+ "h.4.self_attention.dense.bias": "model-00001-of-00003.safetensors",
303
+ "h.4.self_attention.dense.weight": "model-00001-of-00003.safetensors",
304
+ "h.4.self_attention.query_key_value.bias": "model-00001-of-00003.safetensors",
305
+ "h.4.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
306
+ "h.5.input_layernorm.bias": "model-00001-of-00003.safetensors",
307
+ "h.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
308
+ "h.5.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
309
+ "h.5.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
310
+ "h.5.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
311
+ "h.5.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
312
+ "h.5.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
313
+ "h.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
314
+ "h.5.self_attention.dense.bias": "model-00001-of-00003.safetensors",
315
+ "h.5.self_attention.dense.weight": "model-00001-of-00003.safetensors",
316
+ "h.5.self_attention.query_key_value.bias": "model-00001-of-00003.safetensors",
317
+ "h.5.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
318
+ "h.6.input_layernorm.bias": "model-00001-of-00003.safetensors",
319
+ "h.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
320
+ "h.6.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
321
+ "h.6.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
322
+ "h.6.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
323
+ "h.6.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
324
+ "h.6.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
325
+ "h.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
326
+ "h.6.self_attention.dense.bias": "model-00001-of-00003.safetensors",
327
+ "h.6.self_attention.dense.weight": "model-00001-of-00003.safetensors",
328
+ "h.6.self_attention.query_key_value.bias": "model-00001-of-00003.safetensors",
329
+ "h.6.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
330
+ "h.7.input_layernorm.bias": "model-00001-of-00003.safetensors",
331
+ "h.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
332
+ "h.7.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
333
+ "h.7.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
334
+ "h.7.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
335
+ "h.7.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
336
+ "h.7.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
337
+ "h.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
338
+ "h.7.self_attention.dense.bias": "model-00001-of-00003.safetensors",
339
+ "h.7.self_attention.dense.weight": "model-00001-of-00003.safetensors",
340
+ "h.7.self_attention.query_key_value.bias": "model-00001-of-00003.safetensors",
341
+ "h.7.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
342
+ "h.8.input_layernorm.bias": "model-00002-of-00003.safetensors",
343
+ "h.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
344
+ "h.8.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
345
+ "h.8.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
346
+ "h.8.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
347
+ "h.8.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
348
+ "h.8.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
349
+ "h.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
350
+ "h.8.self_attention.dense.bias": "model-00002-of-00003.safetensors",
351
+ "h.8.self_attention.dense.weight": "model-00002-of-00003.safetensors",
352
+ "h.8.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
353
+ "h.8.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
354
+ "h.9.input_layernorm.bias": "model-00002-of-00003.safetensors",
355
+ "h.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
356
+ "h.9.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
357
+ "h.9.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
358
+ "h.9.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
359
+ "h.9.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
360
+ "h.9.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
361
+ "h.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
362
+ "h.9.self_attention.dense.bias": "model-00002-of-00003.safetensors",
363
+ "h.9.self_attention.dense.weight": "model-00002-of-00003.safetensors",
364
+ "h.9.self_attention.query_key_value.bias": "model-00002-of-00003.safetensors",
365
+ "h.9.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
366
+ "ln_f.bias": "model-00003-of-00003.safetensors",
367
+ "ln_f.weight": "model-00003-of-00003.safetensors",
368
+ "word_embeddings.weight": "model-00001-of-00003.safetensors",
369
+ "word_embeddings_layernorm.bias": "model-00001-of-00003.safetensors",
370
+ "word_embeddings_layernorm.weight": "model-00001-of-00003.safetensors"
371
+ }
372
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c875d9c9a51ccc372c8d471e1fefaac3376d8b5b840bd63eac64c16ebf6b5471
3
+ size 14501012
tokenizer_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<unk>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<pad>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ }
36
+ },
37
+ "additional_special_tokens": [],
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "model_max_length": 1000000000000000019884624838656,
42
+ "pad_token": "<pad>",
43
+ "padding_side": "left",
44
+ "tokenizer_class": "BloomTokenizer",
45
+ "unk_token": "<unk>"
46
+ }