--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: imdb results: [] --- # imdb This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2032 - Accuracy: 0.927 - Precision: 0.9241 - Recall: 0.9318 - F1: 0.9280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2612 | 1.0 | 625 | 0.2290 | 0.9122 | 0.9080 | 0.9191 | 0.9135 | | 0.218 | 2.0 | 1250 | 0.2174 | 0.919 | 0.9114 | 0.9298 | 0.9205 | | 0.2019 | 3.0 | 1875 | 0.2120 | 0.922 | 0.9197 | 0.9263 | 0.9230 | | 0.1806 | 4.0 | 2500 | 0.2070 | 0.9214 | 0.9122 | 0.9342 | 0.9230 | | 0.1711 | 5.0 | 3125 | 0.2052 | 0.9244 | 0.9191 | 0.9322 | 0.9256 | | 0.1605 | 6.0 | 3750 | 0.2032 | 0.9236 | 0.9164 | 0.9338 | 0.9250 | | 0.1639 | 7.0 | 4375 | 0.2062 | 0.9244 | 0.9152 | 0.9370 | 0.9260 | | 0.1544 | 8.0 | 5000 | 0.2026 | 0.9268 | 0.9265 | 0.9287 | 0.9276 | | 0.148 | 9.0 | 5625 | 0.2035 | 0.9274 | 0.9212 | 0.9362 | 0.9286 | | 0.144 | 10.0 | 6250 | 0.2032 | 0.927 | 0.9241 | 0.9318 | 0.9280 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1