--- base_model: openai/whisper-tiny datasets: - mozilla-foundation/common_voice_11_0 language: - hi library_name: peft license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - type: wer value: 0.0 name: Wer --- # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.3128 - Wer: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 3 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.9571 | 1.0 | 2 | 1.9745 | 0.0 | | 1.7382 | 2.0 | 4 | 1.5435 | 0.0 | | 1.4451 | 3.0 | 6 | 1.3128 | 0.0 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1