mdouglas HF staff commited on
Commit
b2f22d5
1 Parent(s): ef6f8b6

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ language:
4
+ - en
5
+ - de
6
+ - fr
7
+ - it
8
+ - pt
9
+ - hi
10
+ - es
11
+ - th
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ tags:
15
+ - llama-3.1
16
+ - meta
17
+ - bnb
18
+ ---
19
+
20
+ > [!IMPORTANT]
21
+ > This repository is a community-driven quantized version of the original model [`meta-llama/Meta-Llama-3.1-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) which is the BF16 half-precision official version released by Meta AI.
22
+
23
+ ## Model Information
24
+
25
+ The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
26
+
27
+ This repository contains [`meta-llama/Meta-Llama-3.1-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) quantized using [bitsandbytes](https://github.com/bitsandbytes-foundation/bitsandbytes) from BF16 down to NF4 with a block size of 64.
28
+
29
+ ## Model Usage
30
+
31
+ > [!NOTE]
32
+ > In order to run the inference with Llama 3.1 8B Instruct BNB in NF4, around 6 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.
33
+
34
+ In order to use the current quantized model, support is offered for different solutions as `transformers`, or `text-generation-inference`.
35
+
36
+ ### 🤗 transformers
37
+
38
+ In order to run the inference with Llama 3.1 8B Instruct BNB in NF4, both `torch` and `bitsandbytes` need to be installed as:
39
+
40
+ ```bash
41
+ pip install "torch>=2.0.0" bitsandbytes --upgrade
42
+ ```
43
+
44
+ Then, the latest version of `transformers` need to be installed, being 4.43.0 or higher, as:
45
+
46
+ ```bash
47
+ pip install "transformers[accelerate]>=4.43.0" --upgrade
48
+ ```
49
+
50
+ To run the inference on top of Llama 3.1 8B Instruct BNB in NF4 precision, the model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
51
+
52
+ ```python
53
+ import torch
54
+ from transformers import AutoModelForCausalLM, AutoTokenizer
55
+
56
+ model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-BNB-NF4"
57
+ prompt = [
58
+ {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
59
+ {"role": "user", "content": "What's Deep Learning?"},
60
+ ]
61
+
62
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
63
+
64
+ inputs = tokenizer.apply_chat_template(prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt").cuda()
65
+
66
+ model = AutoModelForCausalLM.from_pretrained(
67
+ model_id,
68
+ torch_dtype=torch.bfloat16,
69
+ low_cpu_mem_usage=True,
70
+ device_map="auto",
71
+ )
72
+
73
+ outputs = model.generate(inputs, do_sample=True, max_new_tokens=256)
74
+ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
75
+ ```