alvarobartt HF staff commited on
Commit
e4d374d
1 Parent(s): a27ef1b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +279 -180
README.md CHANGED
@@ -1,199 +1,298 @@
1
  ---
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - fr
4
+ - it
5
+ - de
6
+ - es
7
+ - en
8
+ license: apache-2.0
9
  library_name: transformers
10
+ pipeline_tag: text-generation
11
+ tags:
12
+ - mixtral
13
+ - autoawq
14
  ---
15
 
16
+ > [!IMPORTANT]
17
+ > This repository is a community-driven quantized version of the original model [`mistralai/Mixtral-8x7B-Instruct-v0.1`](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) which is the BF16 half-precision official version released by Mistral AI.
18
 
19
+ ## Model Information
20
 
21
+ The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks they tested.
22
 
23
+ For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
24
 
25
+ This repository contains [`mistralai/Mixtral-8x7B-Instruct-v0.1`](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) quantized using [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) from FP16 down to INT4 using the GEMM kernels performing zero-point quantization with a group size of 128.
26
 
27
+ ## Model Usage
28
 
29
+ > [!NOTE]
30
+ > In order to run the inference with Mixtral 8x7B Instruct AWQ in INT4, around 24 GiB of VRAM are needed only for loading the model checkpoint, excluding the KV cache and/or the CUDA graphs, meaning that there should be a bit over that VRAM available.
31
 
32
+ In order to use the current quantized model, support is offered for different solutions as `transformers`, `autoawq`, or `text-generation-inference`.
33
 
34
+ ### 🤗 Transformers
 
 
 
 
 
 
35
 
36
+ In order to run the inference with Mixtral 8x7B Instruct AWQ in INT4, you need to install the following packages:
37
 
38
+ ```bash
39
+ pip install -q --upgrade transformers autoawq accelerate
40
+ ```
41
 
42
+ To run the inference on top of Mixtral 8x7B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
 
 
43
 
44
+ ```python
45
+ import torch
46
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig
47
 
48
+ model_id = "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
49
 
50
+ quantization_config = AwqConfig(
51
+ bits=4,
52
+ fuse_max_seq_len=512, # Note: Update this as per your use-case
53
+ do_fuse=True,
54
+ )
55
 
56
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ model_id,
59
+ torch_dtype=torch.float16,
60
+ low_cpu_mem_usage=True,
61
+ device_map="auto",
62
+ quantization_config=quantization_config
63
+ )
64
+
65
+ prompt = [
66
+ {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
67
+ {"role": "user", "content": "What's Deep Learning?"},
68
+ ]
69
+ inputs = tokenizer.apply_chat_template(
70
+ prompt,
71
+ tokenize=True,
72
+ add_generation_prompt=True,
73
+ return_tensors="pt",
74
+ return_dict=True,
75
+ ).to("cuda")
76
+
77
+ outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
78
+ print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
79
+ ```
80
+
81
+ ### AutoAWQ
82
+
83
+ In order to run the inference with Mixtral 8x7B Instruct AWQ in INT4, you need to install the following packages:
84
+
85
+ ```bash
86
+ pip install -q --upgrade transformers autoawq accelerate
87
+ ```
88
+
89
+ Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
90
+
91
+ ```python
92
+ import torch
93
+ from awq import AutoAWQForCausalLM
94
+ from transformers import AutoModelForCausalLM, AutoTokenizer
95
+
96
+ model_id = "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
97
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
98
+ model = AutoAWQForCausalLM.from_pretrained(
99
+ model_id,
100
+ torch_dtype=torch.float16,
101
+ low_cpu_mem_usage=True,
102
+ device_map="auto",
103
+ )
104
+
105
+ prompt = [
106
+ {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
107
+ {"role": "user", "content": "What's Deep Learning?"},
108
+ ]
109
+ inputs = tokenizer.apply_chat_template(
110
+ prompt,
111
+ tokenize=True,
112
+ add_generation_prompt=True,
113
+ return_tensors="pt",
114
+ return_dict=True,
115
+ ).to("cuda")
116
+
117
+ outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
118
+ print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0])
119
+ ```
120
+
121
+ The AutoAWQ script has been adapted from [`AutoAWQ/examples/generate.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/generate.py).
122
+
123
+ ### 🤗 Text Generation Inference (TGI)
124
+
125
+ To run the `text-generation-launcher` with Mixtral 8x7B Instruct AWQ in INT4 with Marlin kernels for optimized inference speed, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and the `huggingface_hub` Python package as you need to login to the Hugging Face Hub.
126
+
127
+ ```bash
128
+ pip install -q --upgrade huggingface_hub
129
+ huggingface-cli login
130
+ ```
131
+
132
+ Then you just need to run the TGI v2.0.3 (or higher) Docker container as follows:
133
+
134
+ ```bash
135
+ docker run --gpus all --shm-size 1g -ti -p 8080:80 \
136
+ -v hf_cache:/data \
137
+ -e MODEL_ID=hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4 \
138
+ -e QUANTIZE=awq \
139
+ -e HF_TOKEN=$(cat ~/.cache/huggingface/token) \
140
+ -e MAX_INPUT_LENGTH=4000 \
141
+ -e MAX_TOTAL_TOKENS=4096 \
142
+ ghcr.io/huggingface/text-generation-inference:2.0.3
143
+ ```
144
+
145
+ > [!NOTE]
146
+ > TGI will expose different endpoints, to see all the endpoints available check [TGI OpenAPI Specification](https://huggingface.github.io/text-generation-inference/#/).
147
+
148
+ To send request to the deployed TGI endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
149
+
150
+ ```bash
151
+ curl 0.0.0.0:8080/v1/chat/completions \
152
+ -X POST \
153
+ -H 'Content-Type: application/json' \
154
+ -d '{
155
+ "model": "tgi",
156
+ "messages": [
157
+ {
158
+ "role": "system",
159
+ "content": "You are a helpful assistant."
160
+ },
161
+ {
162
+ "role": "user",
163
+ "content": "What is Deep Learning?"
164
+ }
165
+ ],
166
+ "max_tokens": 128
167
+ }'
168
+ ```
169
+
170
+ Or programatically via the `huggingface_hub` Python client as follows:
171
+
172
+ ```python
173
+ import os
174
+ from huggingface_hub import InferenceClient
175
+
176
+ client = InferenceClient(base_url="http://0.0.0.0:8080", api_key=os.getenv("HF_TOKEN", "-"))
177
+
178
+ chat_completion = client.chat.completions.create(
179
+ model="hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4",
180
+ messages=[
181
+ {"role": "system", "content": "You are a helpful assistant."},
182
+ {"role": "user", "content": "What is Deep Learning?"},
183
+ ],
184
+ max_tokens=128,
185
+ )
186
+ ```
187
+
188
+ Alternatively, the OpenAI Python client can also be used (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
189
+
190
+ ```python
191
+ import os
192
+ from openai import OpenAI
193
+
194
+ client = OpenAI(base_url="http://0.0.0.0:8080/v1", api_key=os.getenv("OPENAI_API_KEY", "-"))
195
+
196
+ chat_completion = client.chat.completions.create(
197
+ model="tgi",
198
+ messages=[
199
+ {"role": "system", "content": "You are a helpful assistant."},
200
+ {"role": "user", "content": "What is Deep Learning?"},
201
+ ],
202
+ max_tokens=128,
203
+ )
204
+ ```
205
+
206
+ ### vLLM
207
+
208
+ To run vLLM with Mixtral 8x7B Instruct AWQ in INT4, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and run the latest vLLM Docker container as follows:
209
+
210
+ ```bash
211
+ docker run --runtime nvidia --gpus all --ipc=host -p 8000:8000 \
212
+ -v hf_cache:/root/.cache/huggingface \
213
+ vllm/vllm-openai:latest \
214
+ --model hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4 \
215
+ --max-model-len 4096
216
+ ```
217
+
218
+ To send request to the deployed vLLM endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
219
+
220
+ ```bash
221
+ curl 0.0.0.0:8000/v1/chat/completions \
222
+ -X POST \
223
+ -H 'Content-Type: application/json' \
224
+ -d '{
225
+ "model": "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4",
226
+ "messages": [
227
+ {
228
+ "role": "system",
229
+ "content": "You are a helpful assistant."
230
+ },
231
+ {
232
+ "role": "user",
233
+ "content": "What is Deep Learning?"
234
+ }
235
+ ],
236
+ "max_tokens": 128
237
+ }'
238
+ ```
239
+
240
+ Or programatically via the `openai` Python client (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
241
+
242
+ ```python
243
+ import os
244
+ from openai import OpenAI
245
+
246
+ client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key=os.getenv("VLLM_API_KEY", "-"))
247
+
248
+ chat_completion = client.chat.completions.create(
249
+ model="hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4",
250
+ messages=[
251
+ {"role": "system", "content": "You are a helpful assistant."},
252
+ {"role": "user", "content": "What is Deep Learning?"},
253
+ ],
254
+ max_tokens=128,
255
+ )
256
+ ```
257
+
258
+ ## Quantization Reproduction
259
+
260
+ > [!NOTE]
261
+ > In order to quantize Mixtral 8x7B Instruct using AutoAWQ, you will need to use an instance with at least enough CPU RAM to fit the whole model in half-precision i.e. ~90GiB, and an NVIDIA GPU with at least 16GiB of VRAM to quantize it.
262
+
263
+ In order to quantize Mixtral 8x7B Instruct, first install the following packages:
264
+
265
+ ```bash
266
+ pip install -q --upgrade transformers autoawq accelerate
267
+ ```
268
+
269
+ Then run the following script, adapted from [`AutoAWQ/examples/quantize.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/quantize.py):
270
+
271
+ ```python
272
+ from awq import AutoAWQForCausalLM
273
+ from transformers import AutoTokenizer
274
+
275
+ model_path = "mistralai/Mixtral-8x7B-Instruct-v0.1"
276
+ quant_path = "hugging-quants/Mixtral-8x7B-Instruct-v0.1-AWQ-INT4"
277
+ quant_config = {
278
+ "zero_point": True,
279
+ "q_group_size": 128,
280
+ "w_bit": 4,
281
+ "version": "GEMM",
282
+ }
283
+
284
+ # Load model
285
+ model = AutoAWQForCausalLM.from_pretrained(
286
+ model_path, low_cpu_mem_usage=True, use_cache=False,
287
+ )
288
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
289
+
290
+ # Quantize
291
+ model.quantize(tokenizer, quant_config=quant_config)
292
+
293
+ # Save quantized model
294
+ model.save_quantized(quant_path)
295
+ tokenizer.save_pretrained(quant_path)
296
+
297
+ print(f'Model is quantized and saved at "{quant_path}"')
298
+ ```