File size: 4,106 Bytes
c6154a9 eeb2784 c6154a9 eeb2784 c6154a9 eeb2784 c6154a9 eeb2784 c6154a9 eeb2784 c6154a9 eeb2784 47f4625 eeb2784 47f4625 eeb2784 47f4625 eeb2784 47f4625 eeb2784 47f4625 eeb2784 47f4625 eeb2784 47f4625 eeb2784 47f4625 eeb2784 47f4625 eeb2784 47f4625 eeb2784 47f4625 eeb2784 c6154a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test-bert-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- type: precision
value: 0.9354625186165811
name: Precision
- type: recall
value: 0.9513631773813531
name: Recall
- type: f1
value: 0.943345848977889
name: F1
- type: accuracy
value: 0.9867545770294931
name: Accuracy
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- type: accuracy
value: 0.9003797607979704
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGVlNjEyMTJmOTBhMmE1NjY1ODA3MTE0ZjM1YjU5Mzk2ZTY1NWE2MTZiMGMxZTRiNDNjNzNiYzI2NzZiMzAxMiIsInZlcnNpb24iOjF9.ScTPJWA72u8-LTp78w7U8teH-TXdyWnoz4vnK-1TefERahcKQ51eekHI_2xjOPe-1uQmw5z8rKTZfh3MOv-HCw
- type: precision
value: 0.9286807108391197
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjc0OGM4MTQ0OGM3NzA1ZTJmODg4YmJiZTZjOTVkZWYzZGYxZGYzZThhYzRkMzAxOWNhZmQ0NmJhNTMxZGI4MCIsInZlcnNpb24iOjF9.vloc_Hl4_UmVHUMTN2utIKJ2gYntSlZVuVJNkeGn-fR9SeRbKzmkBds4GQNjsV0JiVmnX0POB1hUqRGP4UjdAg
- type: recall
value: 0.9158238551580065
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzE2ZGIwNTAzNDhkMDc0MmU2NTQ2MjIyNjA0NzI0N2JiNDM3NjgxNTU3YmNiNWIwOTRmYzNkMTE0MmUyOTNhNiIsInZlcnNpb24iOjF9.-mi3lImJs1-993tdLiTL7KGFEb-jZJVrviqUlFaVY0rgkojDvRyhbUBnJoD4dadh728kRDTH5NW-ZKb9B9FTDg
- type: f1
value: 0.9222074745602832
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGE1ODE0MGUzZmFhZTNhOWMwMzk3NzQ5MTQwOWIyNjAxZWUwMDgzNDBlNGIyNmY4YmQ4ZDRmOTljZmYyNGYzOCIsInZlcnNpb24iOjF9.PjQJinFobofJhCpsTLEuMSjsskLfbOmAPPQVGWBGk7jYOi3lvd9CUn9i_g1GlbbxuxmO1L9sMAj-pANn-aQiAA
- type: loss
value: 0.8705922365188599
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGI2YTU4ZmExYmZmMjBmMjM3ZWJhNDA0OGMwZjM4YWE4MjU1YmFjMTQxMjQ5MDlhNzYzYTBmYTc3YzRkN2UwOCIsInZlcnNpb24iOjF9.iyuIRW9M-yknXWi2Whboo-rjzicgxSGaeCpypgiQVYexjenzA5itKt_CDx52t7508zYshp-1ERnEHuEwBic9Aw
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0600
- Precision: 0.9355
- Recall: 0.9514
- F1: 0.9433
- Accuracy: 0.9868
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0849 | 1.0 | 1756 | 0.0713 | 0.9144 | 0.9366 | 0.9253 | 0.9817 |
| 0.0359 | 2.0 | 3512 | 0.0658 | 0.9346 | 0.9500 | 0.9422 | 0.9860 |
| 0.0206 | 3.0 | 5268 | 0.0600 | 0.9355 | 0.9514 | 0.9433 | 0.9868 |
### Framework versions
- Transformers 4.11.0.dev0
- Pytorch 1.8.1+cu111
- Datasets 1.12.1.dev0
- Tokenizers 0.10.3
|