|
""" |
|
Code adapted from timm https://github.com/huggingface/pytorch-image-models |
|
|
|
Modifications and additions for mivolo by / Copyright 2023, Irina Tolstykh, Maxim Kuprashevich |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
from cross_bottleneck_attn import CrossBottleneckAttn |
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import trunc_normal_ |
|
from timm.models._builder import build_model_with_cfg |
|
from timm.models._registry import register_model |
|
from timm.models.volo import VOLO |
|
|
|
__all__ = ["MiVOLOModel"] |
|
|
|
|
|
def _cfg(url="", **kwargs): |
|
return { |
|
"url": url, |
|
"num_classes": 1000, |
|
"input_size": (3, 224, 224), |
|
"pool_size": None, |
|
"crop_pct": 0.96, |
|
"interpolation": "bicubic", |
|
"fixed_input_size": True, |
|
"mean": IMAGENET_DEFAULT_MEAN, |
|
"std": IMAGENET_DEFAULT_STD, |
|
"first_conv": None, |
|
"classifier": ("head", "aux_head"), |
|
**kwargs, |
|
} |
|
|
|
|
|
default_cfgs = { |
|
"mivolo_d1_224": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d1_224_84.2.pth.tar", crop_pct=0.96 |
|
), |
|
"mivolo_d1_384": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d1_384_85.2.pth.tar", |
|
crop_pct=1.0, |
|
input_size=(3, 384, 384), |
|
), |
|
"mivolo_d2_224": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d2_224_85.2.pth.tar", crop_pct=0.96 |
|
), |
|
"mivolo_d2_384": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d2_384_86.0.pth.tar", |
|
crop_pct=1.0, |
|
input_size=(3, 384, 384), |
|
), |
|
"mivolo_d3_224": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d3_224_85.4.pth.tar", crop_pct=0.96 |
|
), |
|
"mivolo_d3_448": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d3_448_86.3.pth.tar", |
|
crop_pct=1.0, |
|
input_size=(3, 448, 448), |
|
), |
|
"mivolo_d4_224": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d4_224_85.7.pth.tar", crop_pct=0.96 |
|
), |
|
"mivolo_d4_448": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d4_448_86.79.pth.tar", |
|
crop_pct=1.15, |
|
input_size=(3, 448, 448), |
|
), |
|
"mivolo_d5_224": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d5_224_86.10.pth.tar", crop_pct=0.96 |
|
), |
|
"mivolo_d5_448": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d5_448_87.0.pth.tar", |
|
crop_pct=1.15, |
|
input_size=(3, 448, 448), |
|
), |
|
"mivolo_d5_512": _cfg( |
|
url="https://github.com/sail-sg/volo/releases/download/volo_1/d5_512_87.07.pth.tar", |
|
crop_pct=1.15, |
|
input_size=(3, 512, 512), |
|
), |
|
} |
|
|
|
|
|
def get_output_size(input_shape, conv_layer): |
|
padding = conv_layer.padding |
|
dilation = conv_layer.dilation |
|
kernel_size = conv_layer.kernel_size |
|
stride = conv_layer.stride |
|
|
|
output_size = [ |
|
((input_shape[i] + 2 * padding[i] - dilation[i] * (kernel_size[i] - 1) - 1) // stride[i]) + 1 for i in range(2) |
|
] |
|
return output_size |
|
|
|
|
|
def get_output_size_module(input_size, stem): |
|
output_size = input_size |
|
|
|
for module in stem: |
|
if isinstance(module, nn.Conv2d): |
|
output_size = [ |
|
( |
|
(output_size[i] + 2 * module.padding[i] - module.dilation[i] * (module.kernel_size[i] - 1) - 1) |
|
// module.stride[i] |
|
) |
|
+ 1 |
|
for i in range(2) |
|
] |
|
|
|
return output_size |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Image to Patch Embedding.""" |
|
|
|
def __init__( |
|
self, img_size=224, stem_conv=False, stem_stride=1, patch_size=8, in_chans=3, hidden_dim=64, embed_dim=384 |
|
): |
|
super().__init__() |
|
assert patch_size in [4, 8, 16] |
|
assert in_chans in [3, 6] |
|
self.with_persons_model = in_chans == 6 |
|
self.use_cross_attn = True |
|
|
|
if stem_conv: |
|
if not self.with_persons_model: |
|
self.conv = self.create_stem(stem_stride, in_chans, hidden_dim) |
|
else: |
|
self.conv = True |
|
|
|
self.conv1 = self.create_stem(stem_stride, 3, hidden_dim) |
|
self.conv2 = self.create_stem(stem_stride, 3, hidden_dim) |
|
else: |
|
self.conv = None |
|
|
|
if self.with_persons_model: |
|
|
|
self.proj1 = nn.Conv2d( |
|
hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride |
|
) |
|
self.proj2 = nn.Conv2d( |
|
hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride |
|
) |
|
|
|
stem_out_shape = get_output_size_module((img_size, img_size), self.conv1) |
|
self.proj_output_size = get_output_size(stem_out_shape, self.proj1) |
|
|
|
self.map = CrossBottleneckAttn(embed_dim, dim_out=embed_dim, num_heads=1, feat_size=self.proj_output_size) |
|
|
|
else: |
|
self.proj = nn.Conv2d( |
|
hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride |
|
) |
|
|
|
self.patch_dim = img_size // patch_size |
|
self.num_patches = self.patch_dim**2 |
|
|
|
def create_stem(self, stem_stride, in_chans, hidden_dim): |
|
return nn.Sequential( |
|
nn.Conv2d(in_chans, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias=False), |
|
nn.BatchNorm2d(hidden_dim), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.BatchNorm2d(hidden_dim), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.BatchNorm2d(hidden_dim), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
def forward(self, x): |
|
if self.conv is not None: |
|
if self.with_persons_model: |
|
x1 = x[:, :3] |
|
x2 = x[:, 3:] |
|
|
|
x1 = self.conv1(x1) |
|
x1 = self.proj1(x1) |
|
|
|
x2 = self.conv2(x2) |
|
x2 = self.proj2(x2) |
|
|
|
x = torch.cat([x1, x2], dim=1) |
|
x = self.map(x) |
|
else: |
|
x = self.conv(x) |
|
x = self.proj(x) |
|
|
|
return x |
|
|
|
|
|
class MiVOLOModel(VOLO): |
|
""" |
|
Vision Outlooker, the main class of our model |
|
""" |
|
|
|
def __init__( |
|
self, |
|
layers, |
|
img_size=224, |
|
in_chans=3, |
|
num_classes=1000, |
|
global_pool="token", |
|
patch_size=8, |
|
stem_hidden_dim=64, |
|
embed_dims=None, |
|
num_heads=None, |
|
downsamples=(True, False, False, False), |
|
outlook_attention=(True, False, False, False), |
|
mlp_ratio=3.0, |
|
qkv_bias=False, |
|
drop_rate=0.0, |
|
attn_drop_rate=0.0, |
|
drop_path_rate=0.0, |
|
norm_layer=nn.LayerNorm, |
|
post_layers=("ca", "ca"), |
|
use_aux_head=True, |
|
use_mix_token=False, |
|
pooling_scale=2, |
|
): |
|
super().__init__( |
|
layers, |
|
img_size, |
|
in_chans, |
|
num_classes, |
|
global_pool, |
|
patch_size, |
|
stem_hidden_dim, |
|
embed_dims, |
|
num_heads, |
|
downsamples, |
|
outlook_attention, |
|
mlp_ratio, |
|
qkv_bias, |
|
drop_rate, |
|
attn_drop_rate, |
|
drop_path_rate, |
|
norm_layer, |
|
post_layers, |
|
use_aux_head, |
|
use_mix_token, |
|
pooling_scale, |
|
) |
|
|
|
im_size = img_size[0] if isinstance(img_size, tuple) else img_size |
|
self.patch_embed = PatchEmbed( |
|
img_size=im_size, |
|
stem_conv=True, |
|
stem_stride=2, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
hidden_dim=stem_hidden_dim, |
|
embed_dim=embed_dims[0], |
|
) |
|
|
|
trunc_normal_(self.pos_embed, std=0.02) |
|
self.apply(self._init_weights) |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x).permute(0, 2, 3, 1) |
|
|
|
|
|
x = self.forward_tokens(x) |
|
|
|
|
|
if self.post_network is not None: |
|
x = self.forward_cls(x) |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False, targets=None, epoch=None): |
|
if self.global_pool == "avg": |
|
out = x.mean(dim=1) |
|
elif self.global_pool == "token": |
|
out = x[:, 0] |
|
else: |
|
out = x |
|
if pre_logits: |
|
return out |
|
|
|
features = out |
|
fds_enabled = hasattr(self, "_fds_forward") |
|
if fds_enabled: |
|
features = self._fds_forward(features, targets, epoch) |
|
|
|
out = self.head(features) |
|
if self.aux_head is not None: |
|
|
|
aux = self.aux_head(x[:, 1:]) |
|
out = out + 0.5 * aux.max(1)[0] |
|
|
|
return (out, features) if (fds_enabled and self.training) else out |
|
|
|
def forward(self, x, targets=None, epoch=None): |
|
"""simplified forward (without mix token training)""" |
|
x = self.forward_features(x) |
|
x = self.forward_head(x, targets=targets, epoch=epoch) |
|
return x |
|
|
|
|
|
def _create_mivolo(variant, pretrained=False, **kwargs): |
|
if kwargs.get("features_only", None): |
|
raise RuntimeError("features_only not implemented for Vision Transformer models.") |
|
return build_model_with_cfg(MiVOLOModel, variant, pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def mivolo_d1_224(pretrained=False, **kwargs): |
|
model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs) |
|
model = _create_mivolo("mivolo_d1_224", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d1_384(pretrained=False, **kwargs): |
|
model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs) |
|
model = _create_mivolo("mivolo_d1_384", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d2_224(pretrained=False, **kwargs): |
|
model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) |
|
model = _create_mivolo("mivolo_d2_224", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d2_384(pretrained=False, **kwargs): |
|
model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) |
|
model = _create_mivolo("mivolo_d2_384", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d3_224(pretrained=False, **kwargs): |
|
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) |
|
model = _create_mivolo("mivolo_d3_224", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d3_448(pretrained=False, **kwargs): |
|
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) |
|
model = _create_mivolo("mivolo_d3_448", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d4_224(pretrained=False, **kwargs): |
|
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs) |
|
model = _create_mivolo("mivolo_d4_224", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d4_448(pretrained=False, **kwargs): |
|
"""VOLO-D4 model, Params: 193M""" |
|
model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs) |
|
model = _create_mivolo("mivolo_d4_448", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d5_224(pretrained=False, **kwargs): |
|
model_args = dict( |
|
layers=(12, 12, 20, 4), |
|
embed_dims=(384, 768, 768, 768), |
|
num_heads=(12, 16, 16, 16), |
|
mlp_ratio=4, |
|
stem_hidden_dim=128, |
|
**kwargs |
|
) |
|
model = _create_mivolo("mivolo_d5_224", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d5_448(pretrained=False, **kwargs): |
|
model_args = dict( |
|
layers=(12, 12, 20, 4), |
|
embed_dims=(384, 768, 768, 768), |
|
num_heads=(12, 16, 16, 16), |
|
mlp_ratio=4, |
|
stem_hidden_dim=128, |
|
**kwargs |
|
) |
|
model = _create_mivolo("mivolo_d5_448", pretrained=pretrained, **model_args) |
|
return model |
|
|
|
|
|
@register_model |
|
def mivolo_d5_512(pretrained=False, **kwargs): |
|
model_args = dict( |
|
layers=(12, 12, 20, 4), |
|
embed_dims=(384, 768, 768, 768), |
|
num_heads=(12, 16, 16, 16), |
|
mlp_ratio=4, |
|
stem_hidden_dim=128, |
|
**kwargs |
|
) |
|
model = _create_mivolo("mivolo_d5_512", pretrained=pretrained, **model_args) |
|
return model |
|
|