hunkim commited on
Commit
381f9fa
1 Parent(s): a8997f5

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ ---
9
+
10
+ # Sung/model1
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+ <!--- Describe your model here -->
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('Sung/model1')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Usage (HuggingFace Transformers)
38
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModel
42
+ import torch
43
+
44
+
45
+ #Mean Pooling - Take attention mask into account for correct averaging
46
+ def mean_pooling(model_output, attention_mask):
47
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
48
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
50
+
51
+
52
+ # Sentences we want sentence embeddings for
53
+ sentences = ['This is an example sentence', 'Each sentence is converted']
54
+
55
+ # Load model from HuggingFace Hub
56
+ tokenizer = AutoTokenizer.from_pretrained('Sung/model1')
57
+ model = AutoModel.from_pretrained('Sung/model1')
58
+
59
+ # Tokenize sentences
60
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
61
+
62
+ # Compute token embeddings
63
+ with torch.no_grad():
64
+ model_output = model(**encoded_input)
65
+
66
+ # Perform pooling. In this case, mean pooling.
67
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
68
+
69
+ print("Sentence embeddings:")
70
+ print(sentence_embeddings)
71
+ ```
72
+
73
+
74
+
75
+ ## Evaluation Results
76
+
77
+ <!--- Describe how your model was evaluated -->
78
+
79
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Sung/model1)
80
+
81
+
82
+
83
+ ## Full Model Architecture
84
+ ```
85
+ SentenceTransformer(
86
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
87
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
88
+ )
89
+ ```
90
+
91
+ ## Citing & Authors
92
+
93
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/Huffon_sentence-klue-roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 512,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.19.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.0",
4
+ "transformers": "4.19.2",
5
+ "pytorch": "1.11.0+cu113"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e118e3b26d3996e56bf93f177c15783e7b01c9147e1bf9c9209f817c9e1495d4
3
+ size 442535729
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "never_split": null, "model_max_length": 512, "special_tokens_map_file": "/root/.cache/huggingface/transformers/9d0c87e44b00acfbfbae931b2e4068eb6311a0c3e71e23e5400bdf57cab4bfbf.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "/root/.cache/torch/sentence_transformers/Huffon_sentence-klue-roberta-base", "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff