--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: BBC_CLS_deberta_v3_large_v2 results: [] --- # BBC_CLS_deberta_v3_large_v2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0857 - Accuracy: 0.9866 - Precision: 0.9723 - Recall: 0.9780 - F1: 0.9751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.235 | 1.0 | 66 | 0.6331 | 0.7964 | 0.4047 | 0.4873 | 0.4418 | | 0.4336 | 2.0 | 132 | 0.2201 | 0.8971 | 0.6754 | 0.7091 | 0.6910 | | 0.2133 | 3.0 | 198 | 0.0990 | 0.9776 | 0.9476 | 0.9786 | 0.9602 | | 0.1083 | 4.0 | 264 | 0.1038 | 0.9821 | 0.9656 | 0.9651 | 0.9653 | | 0.0848 | 5.0 | 330 | 0.0907 | 0.9866 | 0.9782 | 0.9714 | 0.9747 | | 0.1087 | 6.0 | 396 | 0.1270 | 0.9799 | 0.9672 | 0.9689 | 0.9671 | | 0.1011 | 7.0 | 462 | 0.1289 | 0.9754 | 0.9677 | 0.9660 | 0.9667 | | 0.0827 | 8.0 | 528 | 0.0990 | 0.9799 | 0.9818 | 0.9479 | 0.9632 | | 0.0621 | 9.0 | 594 | 0.0857 | 0.9866 | 0.9723 | 0.9780 | 0.9751 | | 0.0444 | 10.0 | 660 | 0.1071 | 0.9843 | 0.9769 | 0.9663 | 0.9715 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 1.13.1 - Datasets 2.13.0 - Tokenizers 0.14.1