hyeongjin99
commited on
Commit
•
bbf70db
1
Parent(s):
5d8af68
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: resnet_50_base_aihub_model_py
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.9680951259712739
|
28 |
+
- name: Precision
|
29 |
+
type: precision
|
30 |
+
value: 0.9712201145310659
|
31 |
+
- name: Recall
|
32 |
+
type: recall
|
33 |
+
value: 0.9624241107598097
|
34 |
+
- name: F1
|
35 |
+
type: f1
|
36 |
+
value: 0.9667111625354762
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# resnet_50_base_aihub_model_py
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0987
|
47 |
+
- Accuracy: 0.9681
|
48 |
+
- Precision: 0.9712
|
49 |
+
- Recall: 0.9624
|
50 |
+
- F1: 0.9667
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 5e-05
|
70 |
+
- train_batch_size: 128
|
71 |
+
- eval_batch_size: 128
|
72 |
+
- seed: 42
|
73 |
+
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 512
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 5
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| 0.5577 | 1.0 | 149 | 0.4027 | 0.8453 | 0.8514 | 0.8415 | 0.8435 |
|
85 |
+
| 0.323 | 2.0 | 299 | 0.2346 | 0.9097 | 0.9208 | 0.8962 | 0.9074 |
|
86 |
+
| 0.2467 | 3.0 | 448 | 0.1786 | 0.9303 | 0.9465 | 0.9216 | 0.9326 |
|
87 |
+
| 0.1953 | 4.0 | 598 | 0.1266 | 0.9573 | 0.9591 | 0.9483 | 0.9535 |
|
88 |
+
| 0.1456 | 4.98 | 745 | 0.0987 | 0.9681 | 0.9712 | 0.9624 | 0.9667 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.30.2
|
94 |
+
- Pytorch 2.0.1+cu117
|
95 |
+
- Datasets 2.12.0
|
96 |
+
- Tokenizers 0.13.3
|