|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: vit-base-aihub_model-v2 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8373493975903614 |
|
- name: Precision |
|
type: precision |
|
value: 0.8745971666076694 |
|
- name: Recall |
|
type: recall |
|
value: 0.7993336310123969 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8036849674785987 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-base-aihub_model-v2 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1993 |
|
- Accuracy: 0.8373 |
|
- Precision: 0.8746 |
|
- Recall: 0.7993 |
|
- F1: 0.8037 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 512 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 3 | 1.6294 | 0.6747 | 0.6434 | 0.6238 | 0.5944 | |
|
| No log | 2.0 | 6 | 1.4495 | 0.7530 | 0.7776 | 0.7018 | 0.6875 | |
|
| No log | 3.0 | 9 | 1.3163 | 0.8373 | 0.8563 | 0.7993 | 0.8022 | |
|
| 1.5378 | 4.0 | 12 | 1.2327 | 0.8373 | 0.8736 | 0.7993 | 0.8035 | |
|
| 1.5378 | 5.0 | 15 | 1.1993 | 0.8373 | 0.8746 | 0.7993 | 0.8037 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|