hyeongjin99
commited on
Commit
•
0f5fcf1
1
Parent(s):
35ecab7
update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
-
value: 0.
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
-
value: 0.
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
-
value: 0.
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss:
|
47 |
-
- Accuracy: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -75,17 +75,32 @@ The following hyperparameters were used during training:
|
|
75 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
- lr_scheduler_type: linear
|
77 |
- lr_scheduler_warmup_ratio: 0.1
|
78 |
-
- num_epochs:
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
-
| No log | 1.0 | 3 | 1.
|
85 |
-
| No log | 2.0 | 6 | 1.
|
86 |
-
| No log | 3.0 | 9 |
|
87 |
-
| 1.
|
88 |
-
| 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.963855421686747
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.9609609235289817
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.9613676432460462
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
+
value: 0.9604284776111401
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3076
|
47 |
+
- Accuracy: 0.9639
|
48 |
+
- Precision: 0.9610
|
49 |
+
- Recall: 0.9614
|
50 |
+
- F1: 0.9604
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
75 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
- lr_scheduler_type: linear
|
77 |
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 20
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| No log | 1.0 | 3 | 1.2753 | 0.8373 | 0.8563 | 0.7993 | 0.8022 |
|
85 |
+
| No log | 2.0 | 6 | 1.1252 | 0.8675 | 0.8895 | 0.8300 | 0.8333 |
|
86 |
+
| No log | 3.0 | 9 | 0.9427 | 0.8976 | 0.9185 | 0.8696 | 0.8760 |
|
87 |
+
| 1.1721 | 4.0 | 12 | 0.7995 | 0.9398 | 0.9474 | 0.9195 | 0.9246 |
|
88 |
+
| 1.1721 | 5.0 | 15 | 0.6820 | 0.9699 | 0.9704 | 0.9613 | 0.9642 |
|
89 |
+
| 1.1721 | 6.0 | 18 | 0.5927 | 0.9639 | 0.9603 | 0.9583 | 0.9587 |
|
90 |
+
| 0.7084 | 7.0 | 21 | 0.5239 | 0.9759 | 0.9725 | 0.9729 | 0.9725 |
|
91 |
+
| 0.7084 | 8.0 | 24 | 0.4743 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
|
92 |
+
| 0.7084 | 9.0 | 27 | 0.4436 | 0.9578 | 0.9558 | 0.9556 | 0.9544 |
|
93 |
+
| 0.4668 | 10.0 | 30 | 0.4070 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
|
94 |
+
| 0.4668 | 11.0 | 33 | 0.3817 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
|
95 |
+
| 0.4668 | 12.0 | 36 | 0.3625 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
|
96 |
+
| 0.4668 | 13.0 | 39 | 0.3536 | 0.9578 | 0.9558 | 0.9556 | 0.9544 |
|
97 |
+
| 0.3611 | 14.0 | 42 | 0.3384 | 0.9578 | 0.9558 | 0.9556 | 0.9544 |
|
98 |
+
| 0.3611 | 15.0 | 45 | 0.3249 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
|
99 |
+
| 0.3611 | 16.0 | 48 | 0.3164 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
|
100 |
+
| 0.3063 | 17.0 | 51 | 0.3142 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
|
101 |
+
| 0.3063 | 18.0 | 54 | 0.3122 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
|
102 |
+
| 0.3063 | 19.0 | 57 | 0.3093 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
|
103 |
+
| 0.294 | 20.0 | 60 | 0.3076 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
|
104 |
|
105 |
|
106 |
### Framework versions
|