hyeongjin99 commited on
Commit
0f5fcf1
1 Parent(s): 35ecab7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -15
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
- value: 0.8373493975903614
28
  - name: Precision
29
  type: precision
30
- value: 0.8745971666076694
31
  - name: Recall
32
  type: recall
33
- value: 0.7993336310123969
34
  - name: F1
35
  type: f1
36
- value: 0.8036849674785987
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 1.1993
47
- - Accuracy: 0.8373
48
- - Precision: 0.8746
49
- - Recall: 0.7993
50
- - F1: 0.8037
51
 
52
  ## Model description
53
 
@@ -75,17 +75,32 @@ The following hyperparameters were used during training:
75
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
  - lr_scheduler_type: linear
77
  - lr_scheduler_warmup_ratio: 0.1
78
- - num_epochs: 5
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
- | No log | 1.0 | 3 | 1.6294 | 0.6747 | 0.6434 | 0.6238 | 0.5944 |
85
- | No log | 2.0 | 6 | 1.4495 | 0.7530 | 0.7776 | 0.7018 | 0.6875 |
86
- | No log | 3.0 | 9 | 1.3163 | 0.8373 | 0.8563 | 0.7993 | 0.8022 |
87
- | 1.5378 | 4.0 | 12 | 1.2327 | 0.8373 | 0.8736 | 0.7993 | 0.8035 |
88
- | 1.5378 | 5.0 | 15 | 1.1993 | 0.8373 | 0.8746 | 0.7993 | 0.8037 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
 
91
  ### Framework versions
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.963855421686747
28
  - name: Precision
29
  type: precision
30
+ value: 0.9609609235289817
31
  - name: Recall
32
  type: recall
33
+ value: 0.9613676432460462
34
  - name: F1
35
  type: f1
36
+ value: 0.9604284776111401
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.3076
47
+ - Accuracy: 0.9639
48
+ - Precision: 0.9610
49
+ - Recall: 0.9614
50
+ - F1: 0.9604
51
 
52
  ## Model description
53
 
 
75
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
  - lr_scheduler_type: linear
77
  - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 20
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | No log | 1.0 | 3 | 1.2753 | 0.8373 | 0.8563 | 0.7993 | 0.8022 |
85
+ | No log | 2.0 | 6 | 1.1252 | 0.8675 | 0.8895 | 0.8300 | 0.8333 |
86
+ | No log | 3.0 | 9 | 0.9427 | 0.8976 | 0.9185 | 0.8696 | 0.8760 |
87
+ | 1.1721 | 4.0 | 12 | 0.7995 | 0.9398 | 0.9474 | 0.9195 | 0.9246 |
88
+ | 1.1721 | 5.0 | 15 | 0.6820 | 0.9699 | 0.9704 | 0.9613 | 0.9642 |
89
+ | 1.1721 | 6.0 | 18 | 0.5927 | 0.9639 | 0.9603 | 0.9583 | 0.9587 |
90
+ | 0.7084 | 7.0 | 21 | 0.5239 | 0.9759 | 0.9725 | 0.9729 | 0.9725 |
91
+ | 0.7084 | 8.0 | 24 | 0.4743 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
92
+ | 0.7084 | 9.0 | 27 | 0.4436 | 0.9578 | 0.9558 | 0.9556 | 0.9544 |
93
+ | 0.4668 | 10.0 | 30 | 0.4070 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
94
+ | 0.4668 | 11.0 | 33 | 0.3817 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
95
+ | 0.4668 | 12.0 | 36 | 0.3625 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
96
+ | 0.4668 | 13.0 | 39 | 0.3536 | 0.9578 | 0.9558 | 0.9556 | 0.9544 |
97
+ | 0.3611 | 14.0 | 42 | 0.3384 | 0.9578 | 0.9558 | 0.9556 | 0.9544 |
98
+ | 0.3611 | 15.0 | 45 | 0.3249 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
99
+ | 0.3611 | 16.0 | 48 | 0.3164 | 0.9699 | 0.9665 | 0.9671 | 0.9665 |
100
+ | 0.3063 | 17.0 | 51 | 0.3142 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
101
+ | 0.3063 | 18.0 | 54 | 0.3122 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
102
+ | 0.3063 | 19.0 | 57 | 0.3093 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
103
+ | 0.294 | 20.0 | 60 | 0.3076 | 0.9639 | 0.9610 | 0.9614 | 0.9604 |
104
 
105
 
106
  ### Framework versions