imvladikon commited on
Commit
e09d36a
1 Parent(s): cf018d5

End of training

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ace
4
+ - af
5
+ - als
6
+ - am
7
+ - an
8
+ - ang
9
+ - ar
10
+ - arc
11
+ - arz
12
+ - as
13
+ - ast
14
+ - ay
15
+ - az
16
+ - ba
17
+ - bar
18
+ - be
19
+ - bg
20
+ - bh
21
+ - bn
22
+ - bo
23
+ - br
24
+ - bs
25
+ - ca
26
+ - cbk
27
+ - cdo
28
+ - ce
29
+ - ceb
30
+ - ckb
31
+ - co
32
+ - crh
33
+ - cs
34
+ - csb
35
+ - cv
36
+ - cy
37
+ - da
38
+ - de
39
+ - diq
40
+ - dv
41
+ - el
42
+ - eml
43
+ - en
44
+ - eo
45
+ - es
46
+ - et
47
+ - eu
48
+ - ext
49
+ - fa
50
+ - fi
51
+ - fo
52
+ - fr
53
+ - frr
54
+ - fur
55
+ - fy
56
+ - ga
57
+ - gan
58
+ - gd
59
+ - gl
60
+ - gn
61
+ - gu
62
+ - hak
63
+ - he
64
+ - hi
65
+ - hr
66
+ - hsb
67
+ - hu
68
+ - hy
69
+ - ia
70
+ - id
71
+ - ig
72
+ - ilo
73
+ - io
74
+ - is
75
+ - it
76
+ - ja
77
+ - jbo
78
+ - jv
79
+ - ka
80
+ - kk
81
+ - km
82
+ - kn
83
+ - ko
84
+ - ksh
85
+ - ku
86
+ - ky
87
+ - la
88
+ - lb
89
+ - li
90
+ - lij
91
+ - lmo
92
+ - ln
93
+ - lt
94
+ - lv
95
+ - lzh
96
+ - mg
97
+ - mhr
98
+ - mi
99
+ - min
100
+ - mk
101
+ - ml
102
+ - mn
103
+ - mr
104
+ - ms
105
+ - mt
106
+ - mwl
107
+ - my
108
+ - mzn
109
+ - nan
110
+ - nap
111
+ - nds
112
+ - ne
113
+ - nl
114
+ - nn
115
+ - 'no'
116
+ - nov
117
+ - oc
118
+ - or
119
+ - os
120
+ - pa
121
+ - pdc
122
+ - pl
123
+ - pms
124
+ - pnb
125
+ - ps
126
+ - pt
127
+ - qu
128
+ - rm
129
+ - ro
130
+ - ru
131
+ - rw
132
+ - sa
133
+ - sah
134
+ - scn
135
+ - sco
136
+ - sd
137
+ - sgs
138
+ - sh
139
+ - si
140
+ - sk
141
+ - sl
142
+ - so
143
+ - sq
144
+ - sr
145
+ - su
146
+ - sv
147
+ - sw
148
+ - szl
149
+ - ta
150
+ - te
151
+ - tg
152
+ - th
153
+ - tk
154
+ - tl
155
+ - tr
156
+ - tt
157
+ - ug
158
+ - uk
159
+ - ur
160
+ - uz
161
+ - vec
162
+ - vep
163
+ - vi
164
+ - vls
165
+ - vo
166
+ - vro
167
+ - wa
168
+ - war
169
+ - wuu
170
+ - xmf
171
+ - yi
172
+ - yo
173
+ - yue
174
+ - zea
175
+ - zh
176
+ license: other
177
+ library_name: span-marker
178
+ tags:
179
+ - span-marker
180
+ - token-classification
181
+ - ner
182
+ - named-entity-recognition
183
+ - generated_from_span_marker_trainer
184
+ datasets:
185
+ - wikiann
186
+ metrics:
187
+ - precision
188
+ - recall
189
+ - f1
190
+ widget:
191
+ - text: جامعة بيزا (إيطاليا).
192
+ - text: تعلم في جامعة أوكسفورد، جامعة برنستون، جامعة كولومبيا.
193
+ - text: موطنها بلاد الشام تركيا.
194
+ - text: عادل إمام - نور الشريف
195
+ - text: فوكسي و بورتشا ضد مونكي دي لوفي و نامي
196
+ pipeline_tag: token-classification
197
+ base_model: xlm-roberta-base
198
+ model-index:
199
+ - name: SpanMarker with xlm-roberta-base on wikiann
200
+ results:
201
+ - task:
202
+ type: token-classification
203
+ name: Named Entity Recognition
204
+ dataset:
205
+ name: Unknown
206
+ type: wikiann
207
+ split: eval
208
+ metrics:
209
+ - type: f1
210
+ value: 0.8965362325351544
211
+ name: F1
212
+ - type: precision
213
+ value: 0.9077510917030568
214
+ name: Precision
215
+ - type: recall
216
+ value: 0.8855951007366646
217
+ name: Recall
218
+ ---
219
+
220
+ # SpanMarker with xlm-roberta-base on wikiann
221
+
222
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [wikiann](https://huggingface.co/datasets/wikiann) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the underlying encoder.
223
+
224
+ ## Model Details
225
+
226
+ ### Model Description
227
+ - **Model Type:** SpanMarker
228
+ - **Encoder:** [xlm-roberta-base](https://huggingface.co/xlm-roberta-base)
229
+ - **Maximum Sequence Length:** 512 tokens
230
+ - **Maximum Entity Length:** 30 words
231
+ - **Training Dataset:** [wikiann](https://huggingface.co/datasets/wikiann)
232
+ - **Languages:** ace, af, als, am, an, ang, ar, arc, arz, as, ast, ay, az, ba, bar, be, bg, bh, bn, bo, br, bs, ca, cbk, cdo, ce, ceb, ckb, co, crh, cs, csb, cv, cy, da, de, diq, dv, el, eml, en, eo, es, et, eu, ext, fa, fi, fo, fr, frr, fur, fy, ga, gan, gd, gl, gn, gu, hak, he, hi, hr, hsb, hu, hy, ia, id, ig, ilo, io, is, it, ja, jbo, jv, ka, kk, km, kn, ko, ksh, ku, ky, la, lb, li, lij, lmo, ln, lt, lv, lzh, mg, mhr, mi, min, mk, ml, mn, mr, ms, mt, mwl, my, mzn, nan, nap, nds, ne, nl, nn, no, nov, oc, or, os, pa, pdc, pl, pms, pnb, ps, pt, qu, rm, ro, ru, rw, sa, sah, scn, sco, sd, sgs, sh, si, sk, sl, so, sq, sr, su, sv, sw, szl, ta, te, tg, th, tk, tl, tr, tt, ug, uk, ur, uz, vec, vep, vi, vls, vo, vro, wa, war, wuu, xmf, yi, yo, yue, zea, zh
233
+ - **License:** other
234
+
235
+ ### Model Sources
236
+
237
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
238
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
239
+
240
+ ### Model Labels
241
+ | Label | Examples |
242
+ |:------|:-----------------------------------------------------------------------|
243
+ | LOC | "شور بلاغ ( مقاطعة غرمي )", "دهنو ( تایباد )", "أقاليم ما وراء البحار" |
244
+ | ORG | "الحزب الاشتراكي", "نادي باسوش دي فيريرا", "دايو ( شركة )" |
245
+ | PER | "فرنسوا ميتيران،", "ديفيد نالبانديان", "حكم ( كرة قدم )" |
246
+
247
+ ## Uses
248
+
249
+ ### Direct Use for Inference
250
+
251
+ ```python
252
+ from span_marker import SpanMarkerModel
253
+
254
+ # Download from the 🤗 Hub
255
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
256
+ # Run inference
257
+ entities = model.predict("موطنها بلاد الشام تركيا.")
258
+ ```
259
+
260
+ ### Downstream Use
261
+ You can finetune this model on your own dataset.
262
+
263
+ <details><summary>Click to expand</summary>
264
+
265
+ ```python
266
+ from span_marker import SpanMarkerModel, Trainer
267
+
268
+ # Download from the 🤗 Hub
269
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
270
+
271
+ # Specify a Dataset with "tokens" and "ner_tag" columns
272
+ dataset = load_dataset("conll2003") # For example CoNLL2003
273
+
274
+ # Initialize a Trainer using the pretrained model & dataset
275
+ trainer = Trainer(
276
+ model=model,
277
+ train_dataset=dataset["train"],
278
+ eval_dataset=dataset["validation"],
279
+ )
280
+ trainer.train()
281
+ trainer.save_model("span_marker_model_id-finetuned")
282
+ ```
283
+ </details>
284
+
285
+ <!--
286
+ ### Out-of-Scope Use
287
+
288
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
289
+ -->
290
+
291
+ <!--
292
+ ## Bias, Risks and Limitations
293
+
294
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
295
+ -->
296
+
297
+ <!--
298
+ ### Recommendations
299
+
300
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
301
+ -->
302
+
303
+ ## Training Details
304
+
305
+ ### Training Set Metrics
306
+ | Training set | Min | Median | Max |
307
+ |:----------------------|:----|:-------|:----|
308
+ | Sentence length | 3 | 6.4592 | 63 |
309
+ | Entities per sentence | 1 | 1.1251 | 13 |
310
+
311
+ ### Training Hyperparameters
312
+ - learning_rate: 1e-05
313
+ - train_batch_size: 4
314
+ - eval_batch_size: 4
315
+ - seed: 42
316
+ - gradient_accumulation_steps: 2
317
+ - total_train_batch_size: 8
318
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
319
+ - lr_scheduler_type: linear
320
+ - lr_scheduler_warmup_ratio: 0.1
321
+ - num_epochs: 10
322
+
323
+ ### Training Results
324
+ | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
325
+ |:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
326
+ | 0.1989 | 500 | 0.1735 | 0.2667 | 0.0011 | 0.0021 | 0.4103 |
327
+ | 0.3979 | 1000 | 0.0808 | 0.7283 | 0.5314 | 0.6145 | 0.7716 |
328
+ | 0.5968 | 1500 | 0.0595 | 0.7876 | 0.6872 | 0.7340 | 0.8546 |
329
+ | 0.7957 | 2000 | 0.0532 | 0.8148 | 0.7600 | 0.7865 | 0.8823 |
330
+ | 0.9946 | 2500 | 0.0478 | 0.8485 | 0.8028 | 0.8250 | 0.9085 |
331
+ | 1.1936 | 3000 | 0.0419 | 0.8586 | 0.8084 | 0.8327 | 0.9101 |
332
+ | 1.3925 | 3500 | 0.0390 | 0.8628 | 0.8367 | 0.8495 | 0.9237 |
333
+ | 1.5914 | 4000 | 0.0456 | 0.8559 | 0.8299 | 0.8427 | 0.9231 |
334
+ | 1.7903 | 4500 | 0.0375 | 0.8682 | 0.8469 | 0.8574 | 0.9282 |
335
+ | 1.9893 | 5000 | 0.0323 | 0.8821 | 0.8635 | 0.8727 | 0.9348 |
336
+ | 2.1882 | 5500 | 0.0346 | 0.8781 | 0.8632 | 0.8706 | 0.9346 |
337
+ | 2.3871 | 6000 | 0.0318 | 0.8953 | 0.8523 | 0.8733 | 0.9345 |
338
+ | 2.5860 | 6500 | 0.0311 | 0.8861 | 0.8691 | 0.8775 | 0.9373 |
339
+ | 2.7850 | 7000 | 0.0323 | 0.89 | 0.8689 | 0.8793 | 0.9383 |
340
+ | 2.9839 | 7500 | 0.0310 | 0.8892 | 0.8780 | 0.8836 | 0.9419 |
341
+ | 3.1828 | 8000 | 0.0320 | 0.8817 | 0.8762 | 0.8790 | 0.9397 |
342
+ | 3.3817 | 8500 | 0.0291 | 0.8981 | 0.8778 | 0.8878 | 0.9438 |
343
+ | 3.5807 | 9000 | 0.0336 | 0.8972 | 0.8792 | 0.8881 | 0.9450 |
344
+ | 3.7796 | 9500 | 0.0323 | 0.8927 | 0.8757 | 0.8841 | 0.9424 |
345
+ | 3.9785 | 10000 | 0.0315 | 0.9028 | 0.8748 | 0.8886 | 0.9436 |
346
+ | 4.1774 | 10500 | 0.0330 | 0.8984 | 0.8855 | 0.8919 | 0.9458 |
347
+ | 4.3764 | 11000 | 0.0315 | 0.9023 | 0.8844 | 0.8933 | 0.9469 |
348
+ | 4.5753 | 11500 | 0.0305 | 0.9029 | 0.8886 | 0.8957 | 0.9486 |
349
+ | 4.6171 | 11605 | 0.0323 | 0.9078 | 0.8856 | 0.8965 | 0.9487 |
350
+
351
+ ### Framework Versions
352
+ - Python: 3.10.12
353
+ - SpanMarker: 1.4.0
354
+ - Transformers: 4.34.1
355
+ - PyTorch: 2.1.0+cu118
356
+ - Datasets: 2.14.6
357
+ - Tokenizers: 0.14.1
358
+
359
+ ## Citation
360
+
361
+ ### BibTeX
362
+ ```
363
+ @software{Aarsen_SpanMarker,
364
+ author = {Aarsen, Tom},
365
+ license = {Apache-2.0},
366
+ title = {{SpanMarker for Named Entity Recognition}},
367
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
368
+ }
369
+ ```
370
+
371
+ <!--
372
+ ## Glossary
373
+
374
+ *Clearly define terms in order to be accessible across audiences.*
375
+ -->
376
+
377
+ <!--
378
+ ## Model Card Authors
379
+
380
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
381
+ -->
382
+
383
+ <!--
384
+ ## Model Card Contact
385
+
386
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
387
+ -->
config.json ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SpanMarkerModel"
4
+ ],
5
+ "encoder": {
6
+ "_name_or_path": "xlm-roberta-base",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "XLMRobertaForMaskedLM"
10
+ ],
11
+ "attention_probs_dropout_prob": 0.1,
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": 0,
15
+ "chunk_size_feed_forward": 0,
16
+ "classifier_dropout": null,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": 2,
24
+ "exponential_decay_length_penalty": null,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "hidden_act": "gelu",
29
+ "hidden_dropout_prob": 0.1,
30
+ "hidden_size": 768,
31
+ "id2label": {
32
+ "0": "O",
33
+ "1": "B-PER",
34
+ "2": "I-PER",
35
+ "3": "B-ORG",
36
+ "4": "I-ORG",
37
+ "5": "B-LOC",
38
+ "6": "I-LOC"
39
+ },
40
+ "initializer_range": 0.02,
41
+ "intermediate_size": 3072,
42
+ "is_decoder": false,
43
+ "is_encoder_decoder": false,
44
+ "label2id": {
45
+ "B-LOC": 5,
46
+ "B-ORG": 3,
47
+ "B-PER": 1,
48
+ "I-LOC": 6,
49
+ "I-ORG": 4,
50
+ "I-PER": 2,
51
+ "O": 0
52
+ },
53
+ "layer_norm_eps": 1e-05,
54
+ "length_penalty": 1.0,
55
+ "max_length": 20,
56
+ "max_position_embeddings": 514,
57
+ "min_length": 0,
58
+ "model_type": "xlm-roberta",
59
+ "no_repeat_ngram_size": 0,
60
+ "num_attention_heads": 12,
61
+ "num_beam_groups": 1,
62
+ "num_beams": 1,
63
+ "num_hidden_layers": 12,
64
+ "num_return_sequences": 1,
65
+ "output_attentions": false,
66
+ "output_hidden_states": false,
67
+ "output_past": true,
68
+ "output_scores": false,
69
+ "pad_token_id": 1,
70
+ "position_embedding_type": "absolute",
71
+ "prefix": null,
72
+ "problem_type": null,
73
+ "pruned_heads": {},
74
+ "remove_invalid_values": false,
75
+ "repetition_penalty": 1.0,
76
+ "return_dict": true,
77
+ "return_dict_in_generate": false,
78
+ "sep_token_id": null,
79
+ "suppress_tokens": null,
80
+ "task_specific_params": null,
81
+ "temperature": 1.0,
82
+ "tf_legacy_loss": false,
83
+ "tie_encoder_decoder": false,
84
+ "tie_word_embeddings": true,
85
+ "tokenizer_class": null,
86
+ "top_k": 50,
87
+ "top_p": 1.0,
88
+ "torch_dtype": null,
89
+ "torchscript": false,
90
+ "transformers_version": "4.34.1",
91
+ "type_vocab_size": 1,
92
+ "typical_p": 1.0,
93
+ "use_bfloat16": false,
94
+ "use_cache": true,
95
+ "vocab_size": 250008
96
+ },
97
+ "entity_max_length": 30,
98
+ "id2label": {
99
+ "0": "O",
100
+ "1": "LOC",
101
+ "2": "ORG",
102
+ "3": "PER"
103
+ },
104
+ "id2reduced_id": {
105
+ "0": 0,
106
+ "1": 3,
107
+ "2": 3,
108
+ "3": 2,
109
+ "4": 2,
110
+ "5": 1,
111
+ "6": 1
112
+ },
113
+ "label2id": {
114
+ "LOC": 1,
115
+ "O": 0,
116
+ "ORG": 2,
117
+ "PER": 3
118
+ },
119
+ "marker_max_length": 128,
120
+ "max_next_context": null,
121
+ "max_prev_context": null,
122
+ "model_max_length": 512,
123
+ "model_max_length_default": 512,
124
+ "model_type": "span-marker",
125
+ "span_marker_version": "1.4.0",
126
+ "torch_dtype": "float32",
127
+ "trained_with_document_context": false,
128
+ "transformers_version": "4.34.1",
129
+ "vocab_size": 250008
130
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01a5ef5fe0f14710d8e42af3a0f539a5475152fcb3b48b8f7bfc23313697ea31
3
+ size 1112287022
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:506eee40ca0b2e2c1091eb8c4a0862617a93f07e5daedd2ade14c8e511f13ac3
3
+ size 17083511
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "250001": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "250002": {
45
+ "content": "<start>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "250003": {
53
+ "content": "<end>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ }
60
+ },
61
+ "bos_token": "<s>",
62
+ "clean_up_tokenization_spaces": true,
63
+ "cls_token": "<s>",
64
+ "entity_max_length": 30,
65
+ "eos_token": "</s>",
66
+ "mask_token": "<mask>",
67
+ "model_max_length": 512,
68
+ "pad_token": "<pad>",
69
+ "sep_token": "</s>",
70
+ "tokenizer_class": "XLMRobertaTokenizer",
71
+ "unk_token": "<unk>"
72
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:752f2c188cd7912006a5ed551aad0439b82667729154f2a1f570a7536165afd7
3
+ size 4536