--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2-malayalam-combo-v1 results: [] --- # w2v-bert-2-malayalam-combo-v1 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.1007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.9859 | 0.2432 | 300 | inf | 0.4513 | | 0.2903 | 0.4864 | 600 | inf | 0.4107 | | 0.2294 | 0.7296 | 900 | inf | 0.3331 | | 0.2075 | 0.9728 | 1200 | inf | 0.2968 | | 0.1737 | 1.2161 | 1500 | inf | 0.2862 | | 0.1561 | 1.4593 | 1800 | inf | 0.2603 | | 0.1435 | 1.7025 | 2100 | inf | 0.2496 | | 0.1388 | 1.9457 | 2400 | inf | 0.2329 | | 0.1213 | 2.1889 | 2700 | inf | 0.2271 | | 0.1168 | 2.4321 | 3000 | inf | 0.2202 | | 0.1086 | 2.6753 | 3300 | inf | 0.2273 | | 0.1131 | 2.9185 | 3600 | inf | 0.2132 | | 0.0951 | 3.1617 | 3900 | inf | 0.2068 | | 0.0851 | 3.4049 | 4200 | inf | 0.2075 | | 0.0905 | 3.6482 | 4500 | inf | 0.1969 | | 0.0811 | 3.8914 | 4800 | inf | 0.1941 | | 0.0754 | 4.1346 | 5100 | inf | 0.1717 | | 0.0653 | 4.3778 | 5400 | inf | 0.1704 | | 0.0663 | 4.6210 | 5700 | inf | 0.1737 | | 0.0635 | 4.8642 | 6000 | inf | 0.1551 | | 0.0607 | 5.1074 | 6300 | inf | 0.1479 | | 0.05 | 5.3506 | 6600 | inf | 0.1478 | | 0.0519 | 5.5938 | 6900 | inf | 0.1441 | | 0.048 | 5.8370 | 7200 | inf | 0.1410 | | 0.0428 | 6.0803 | 7500 | inf | 0.1362 | | 0.0344 | 6.3235 | 7800 | inf | 0.1325 | | 0.0344 | 6.5667 | 8100 | inf | 0.1242 | | 0.0361 | 6.8099 | 8400 | inf | 0.1247 | | 0.031 | 7.0531 | 8700 | inf | 0.1227 | | 0.0256 | 7.2963 | 9000 | inf | 0.1175 | | 0.023 | 7.5395 | 9300 | inf | 0.1172 | | 0.0223 | 7.7827 | 9600 | inf | 0.1161 | | 0.0203 | 8.0259 | 9900 | inf | 0.1099 | | 0.014 | 8.2692 | 10200 | inf | 0.1094 | | 0.0158 | 8.5124 | 10500 | inf | 0.1081 | | 0.0147 | 8.7556 | 10800 | inf | 0.1078 | | 0.0132 | 8.9988 | 11100 | inf | 0.1049 | | 0.008 | 9.2420 | 11400 | inf | 0.1048 | | 0.0081 | 9.4852 | 11700 | inf | 0.1010 | | 0.0081 | 9.7284 | 12000 | inf | 0.1010 | | 0.0094 | 9.9716 | 12300 | inf | 0.1007 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1