Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,1072 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
model-index:
|
5 |
+
- name: zpoint_large_embedding_zh
|
6 |
+
results:
|
7 |
+
- task:
|
8 |
+
type: STS
|
9 |
+
dataset:
|
10 |
+
type: C-MTEB/AFQMC
|
11 |
+
name: MTEB AFQMC
|
12 |
+
config: default
|
13 |
+
split: validation
|
14 |
+
revision: None
|
15 |
+
metrics:
|
16 |
+
- type: cos_sim_pearson
|
17 |
+
value: 56.52479321107392
|
18 |
+
- type: cos_sim_spearman
|
19 |
+
value: 60.72175935031135
|
20 |
+
- type: euclidean_pearson
|
21 |
+
value: 59.40990657564856
|
22 |
+
- type: euclidean_spearman
|
23 |
+
value: 60.72175934804556
|
24 |
+
- type: manhattan_pearson
|
25 |
+
value: 59.4134322847349
|
26 |
+
- type: manhattan_spearman
|
27 |
+
value: 60.724413114688225
|
28 |
+
- task:
|
29 |
+
type: STS
|
30 |
+
dataset:
|
31 |
+
type: C-MTEB/ATEC
|
32 |
+
name: MTEB ATEC
|
33 |
+
config: default
|
34 |
+
split: test
|
35 |
+
revision: None
|
36 |
+
metrics:
|
37 |
+
- type: cos_sim_pearson
|
38 |
+
value: 56.492631347325464
|
39 |
+
- type: cos_sim_spearman
|
40 |
+
value: 58.765171687177656
|
41 |
+
- type: euclidean_pearson
|
42 |
+
value: 63.236364373113844
|
43 |
+
- type: euclidean_spearman
|
44 |
+
value: 58.765171686714865
|
45 |
+
- type: manhattan_pearson
|
46 |
+
value: 63.22241814845751
|
47 |
+
- type: manhattan_spearman
|
48 |
+
value: 58.762780342648234
|
49 |
+
- task:
|
50 |
+
type: Classification
|
51 |
+
dataset:
|
52 |
+
type: mteb/amazon_reviews_multi
|
53 |
+
name: MTEB AmazonReviewsClassification (zh)
|
54 |
+
config: zh
|
55 |
+
split: test
|
56 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
57 |
+
metrics:
|
58 |
+
- type: accuracy
|
59 |
+
value: 49.72
|
60 |
+
- type: f1
|
61 |
+
value: 46.588683657317084
|
62 |
+
- task:
|
63 |
+
type: STS
|
64 |
+
dataset:
|
65 |
+
type: C-MTEB/BQ
|
66 |
+
name: MTEB BQ
|
67 |
+
config: default
|
68 |
+
split: test
|
69 |
+
revision: None
|
70 |
+
metrics:
|
71 |
+
- type: cos_sim_pearson
|
72 |
+
value: 73.07779128771674
|
73 |
+
- type: cos_sim_spearman
|
74 |
+
value: 75.03682691328844
|
75 |
+
- type: euclidean_pearson
|
76 |
+
value: 73.68098259699073
|
77 |
+
- type: euclidean_spearman
|
78 |
+
value: 75.03683037648963
|
79 |
+
- type: manhattan_pearson
|
80 |
+
value: 73.66963332679124
|
81 |
+
- type: manhattan_spearman
|
82 |
+
value: 75.02269337817758
|
83 |
+
- task:
|
84 |
+
type: Clustering
|
85 |
+
dataset:
|
86 |
+
type: C-MTEB/CLSClusteringP2P
|
87 |
+
name: MTEB CLSClusteringP2P
|
88 |
+
config: default
|
89 |
+
split: test
|
90 |
+
revision: None
|
91 |
+
metrics:
|
92 |
+
- type: v_measure
|
93 |
+
value: 58.2897067752906
|
94 |
+
- task:
|
95 |
+
type: Clustering
|
96 |
+
dataset:
|
97 |
+
type: C-MTEB/CLSClusteringS2S
|
98 |
+
name: MTEB CLSClusteringS2S
|
99 |
+
config: default
|
100 |
+
split: test
|
101 |
+
revision: None
|
102 |
+
metrics:
|
103 |
+
- type: v_measure
|
104 |
+
value: 48.79170511177673
|
105 |
+
- task:
|
106 |
+
type: Reranking
|
107 |
+
dataset:
|
108 |
+
type: C-MTEB/CMedQAv1
|
109 |
+
name: MTEB CMedQAv1
|
110 |
+
config: default
|
111 |
+
split: test
|
112 |
+
revision: None
|
113 |
+
metrics:
|
114 |
+
- type: map
|
115 |
+
value: 91.10738371185181
|
116 |
+
- type: mrr
|
117 |
+
value: 92.82496031746031
|
118 |
+
- task:
|
119 |
+
type: Reranking
|
120 |
+
dataset:
|
121 |
+
type: C-MTEB/CMedQAv2
|
122 |
+
name: MTEB CMedQAv2
|
123 |
+
config: default
|
124 |
+
split: test
|
125 |
+
revision: None
|
126 |
+
metrics:
|
127 |
+
- type: map
|
128 |
+
value: 90.06959035874831
|
129 |
+
- type: mrr
|
130 |
+
value: 92.00789682539683
|
131 |
+
- task:
|
132 |
+
type: Retrieval
|
133 |
+
dataset:
|
134 |
+
type: C-MTEB/CmedqaRetrieval
|
135 |
+
name: MTEB CmedqaRetrieval
|
136 |
+
config: default
|
137 |
+
split: dev
|
138 |
+
revision: None
|
139 |
+
metrics:
|
140 |
+
- type: map_at_1
|
141 |
+
value: 27.132
|
142 |
+
- type: map_at_10
|
143 |
+
value: 40.400999999999996
|
144 |
+
- type: map_at_100
|
145 |
+
value: 42.246
|
146 |
+
- type: map_at_1000
|
147 |
+
value: 42.351
|
148 |
+
- type: map_at_3
|
149 |
+
value: 35.94
|
150 |
+
- type: map_at_5
|
151 |
+
value: 38.527
|
152 |
+
- type: mrr_at_1
|
153 |
+
value: 41.285
|
154 |
+
- type: mrr_at_10
|
155 |
+
value: 49.474000000000004
|
156 |
+
- type: mrr_at_100
|
157 |
+
value: 50.4
|
158 |
+
- type: mrr_at_1000
|
159 |
+
value: 50.438
|
160 |
+
- type: mrr_at_3
|
161 |
+
value: 46.891
|
162 |
+
- type: mrr_at_5
|
163 |
+
value: 48.353
|
164 |
+
- type: ndcg_at_1
|
165 |
+
value: 41.285
|
166 |
+
- type: ndcg_at_10
|
167 |
+
value: 47.159
|
168 |
+
- type: ndcg_at_100
|
169 |
+
value: 54.163
|
170 |
+
- type: ndcg_at_1000
|
171 |
+
value: 55.921
|
172 |
+
- type: ndcg_at_3
|
173 |
+
value: 41.678
|
174 |
+
- type: ndcg_at_5
|
175 |
+
value: 44.069
|
176 |
+
- type: precision_at_1
|
177 |
+
value: 41.285
|
178 |
+
- type: precision_at_10
|
179 |
+
value: 10.468
|
180 |
+
- type: precision_at_100
|
181 |
+
value: 1.611
|
182 |
+
- type: precision_at_1000
|
183 |
+
value: 0.183
|
184 |
+
- type: precision_at_3
|
185 |
+
value: 23.648
|
186 |
+
- type: precision_at_5
|
187 |
+
value: 17.229
|
188 |
+
- type: recall_at_1
|
189 |
+
value: 27.132
|
190 |
+
- type: recall_at_10
|
191 |
+
value: 57.977999999999994
|
192 |
+
- type: recall_at_100
|
193 |
+
value: 86.88
|
194 |
+
- type: recall_at_1000
|
195 |
+
value: 98.586
|
196 |
+
- type: recall_at_3
|
197 |
+
value: 41.487
|
198 |
+
- type: recall_at_5
|
199 |
+
value: 48.79
|
200 |
+
- task:
|
201 |
+
type: PairClassification
|
202 |
+
dataset:
|
203 |
+
type: C-MTEB/CMNLI
|
204 |
+
name: MTEB Cmnli
|
205 |
+
config: default
|
206 |
+
split: validation
|
207 |
+
revision: None
|
208 |
+
metrics:
|
209 |
+
- type: cos_sim_accuracy
|
210 |
+
value: 86.06133493686109
|
211 |
+
- type: cos_sim_ap
|
212 |
+
value: 92.54288511740305
|
213 |
+
- type: cos_sim_f1
|
214 |
+
value: 86.85572811163628
|
215 |
+
- type: cos_sim_precision
|
216 |
+
value: 83.72748969407681
|
217 |
+
- type: cos_sim_recall
|
218 |
+
value: 90.22679448211363
|
219 |
+
- type: dot_accuracy
|
220 |
+
value: 86.06133493686109
|
221 |
+
- type: dot_ap
|
222 |
+
value: 92.53922591080917
|
223 |
+
- type: dot_f1
|
224 |
+
value: 86.85572811163628
|
225 |
+
- type: dot_precision
|
226 |
+
value: 83.72748969407681
|
227 |
+
- type: dot_recall
|
228 |
+
value: 90.22679448211363
|
229 |
+
- type: euclidean_accuracy
|
230 |
+
value: 86.06133493686109
|
231 |
+
- type: euclidean_ap
|
232 |
+
value: 92.54287994398305
|
233 |
+
- type: euclidean_f1
|
234 |
+
value: 86.85572811163628
|
235 |
+
- type: euclidean_precision
|
236 |
+
value: 83.72748969407681
|
237 |
+
- type: euclidean_recall
|
238 |
+
value: 90.22679448211363
|
239 |
+
- type: manhattan_accuracy
|
240 |
+
value: 86.01322910402887
|
241 |
+
- type: manhattan_ap
|
242 |
+
value: 92.53060255301997
|
243 |
+
- type: manhattan_f1
|
244 |
+
value: 86.81441683456458
|
245 |
+
- type: manhattan_precision
|
246 |
+
value: 83.27249302125833
|
247 |
+
- type: manhattan_recall
|
248 |
+
value: 90.67103109656301
|
249 |
+
- type: max_accuracy
|
250 |
+
value: 86.06133493686109
|
251 |
+
- type: max_ap
|
252 |
+
value: 92.54288511740305
|
253 |
+
- type: max_f1
|
254 |
+
value: 86.85572811163628
|
255 |
+
- task:
|
256 |
+
type: Retrieval
|
257 |
+
dataset:
|
258 |
+
type: C-MTEB/CovidRetrieval
|
259 |
+
name: MTEB CovidRetrieval
|
260 |
+
config: default
|
261 |
+
split: dev
|
262 |
+
revision: None
|
263 |
+
metrics:
|
264 |
+
- type: map_at_1
|
265 |
+
value: 78.899
|
266 |
+
- type: map_at_10
|
267 |
+
value: 86.232
|
268 |
+
- type: map_at_100
|
269 |
+
value: 86.331
|
270 |
+
- type: map_at_1000
|
271 |
+
value: 86.332
|
272 |
+
- type: map_at_3
|
273 |
+
value: 85.256
|
274 |
+
- type: map_at_5
|
275 |
+
value: 85.883
|
276 |
+
- type: mrr_at_1
|
277 |
+
value: 79.347
|
278 |
+
- type: mrr_at_10
|
279 |
+
value: 86.252
|
280 |
+
- type: mrr_at_100
|
281 |
+
value: 86.342
|
282 |
+
- type: mrr_at_1000
|
283 |
+
value: 86.343
|
284 |
+
- type: mrr_at_3
|
285 |
+
value: 85.283
|
286 |
+
- type: mrr_at_5
|
287 |
+
value: 85.91
|
288 |
+
- type: ndcg_at_1
|
289 |
+
value: 79.347
|
290 |
+
- type: ndcg_at_10
|
291 |
+
value: 89.143
|
292 |
+
- type: ndcg_at_100
|
293 |
+
value: 89.541
|
294 |
+
- type: ndcg_at_1000
|
295 |
+
value: 89.58
|
296 |
+
- type: ndcg_at_3
|
297 |
+
value: 87.227
|
298 |
+
- type: ndcg_at_5
|
299 |
+
value: 88.31400000000001
|
300 |
+
- type: precision_at_1
|
301 |
+
value: 79.347
|
302 |
+
- type: precision_at_10
|
303 |
+
value: 9.905
|
304 |
+
- type: precision_at_100
|
305 |
+
value: 1.0070000000000001
|
306 |
+
- type: precision_at_1000
|
307 |
+
value: 0.101
|
308 |
+
- type: precision_at_3
|
309 |
+
value: 31.261
|
310 |
+
- type: precision_at_5
|
311 |
+
value: 19.305
|
312 |
+
- type: recall_at_1
|
313 |
+
value: 78.899
|
314 |
+
- type: recall_at_10
|
315 |
+
value: 97.99799999999999
|
316 |
+
- type: recall_at_100
|
317 |
+
value: 99.684
|
318 |
+
- type: recall_at_1000
|
319 |
+
value: 100.0
|
320 |
+
- type: recall_at_3
|
321 |
+
value: 92.808
|
322 |
+
- type: recall_at_5
|
323 |
+
value: 95.46900000000001
|
324 |
+
- task:
|
325 |
+
type: Retrieval
|
326 |
+
dataset:
|
327 |
+
type: C-MTEB/DuRetrieval
|
328 |
+
name: MTEB DuRetrieval
|
329 |
+
config: default
|
330 |
+
split: dev
|
331 |
+
revision: None
|
332 |
+
metrics:
|
333 |
+
- type: map_at_1
|
334 |
+
value: 27.107999999999997
|
335 |
+
- type: map_at_10
|
336 |
+
value: 82.525
|
337 |
+
- type: map_at_100
|
338 |
+
value: 85.168
|
339 |
+
- type: map_at_1000
|
340 |
+
value: 85.194
|
341 |
+
- type: map_at_3
|
342 |
+
value: 57.74399999999999
|
343 |
+
- type: map_at_5
|
344 |
+
value: 72.53699999999999
|
345 |
+
- type: mrr_at_1
|
346 |
+
value: 92.30000000000001
|
347 |
+
- type: mrr_at_10
|
348 |
+
value: 94.705
|
349 |
+
- type: mrr_at_100
|
350 |
+
value: 94.76599999999999
|
351 |
+
- type: mrr_at_1000
|
352 |
+
value: 94.76599999999999
|
353 |
+
- type: mrr_at_3
|
354 |
+
value: 94.55
|
355 |
+
- type: mrr_at_5
|
356 |
+
value: 94.64
|
357 |
+
- type: ndcg_at_1
|
358 |
+
value: 92.30000000000001
|
359 |
+
- type: ndcg_at_10
|
360 |
+
value: 89.23100000000001
|
361 |
+
- type: ndcg_at_100
|
362 |
+
value: 91.556
|
363 |
+
- type: ndcg_at_1000
|
364 |
+
value: 91.81700000000001
|
365 |
+
- type: ndcg_at_3
|
366 |
+
value: 88.558
|
367 |
+
- type: ndcg_at_5
|
368 |
+
value: 87.316
|
369 |
+
- type: precision_at_1
|
370 |
+
value: 92.30000000000001
|
371 |
+
- type: precision_at_10
|
372 |
+
value: 42.38
|
373 |
+
- type: precision_at_100
|
374 |
+
value: 4.818
|
375 |
+
- type: precision_at_1000
|
376 |
+
value: 0.488
|
377 |
+
- type: precision_at_3
|
378 |
+
value: 79.14999999999999
|
379 |
+
- type: precision_at_5
|
380 |
+
value: 66.63
|
381 |
+
- type: recall_at_1
|
382 |
+
value: 27.107999999999997
|
383 |
+
- type: recall_at_10
|
384 |
+
value: 89.914
|
385 |
+
- type: recall_at_100
|
386 |
+
value: 97.658
|
387 |
+
- type: recall_at_1000
|
388 |
+
value: 99.00099999999999
|
389 |
+
- type: recall_at_3
|
390 |
+
value: 59.673
|
391 |
+
- type: recall_at_5
|
392 |
+
value: 76.437
|
393 |
+
- task:
|
394 |
+
type: Retrieval
|
395 |
+
dataset:
|
396 |
+
type: C-MTEB/EcomRetrieval
|
397 |
+
name: MTEB EcomRetrieval
|
398 |
+
config: default
|
399 |
+
split: dev
|
400 |
+
revision: None
|
401 |
+
metrics:
|
402 |
+
- type: map_at_1
|
403 |
+
value: 55.00000000000001
|
404 |
+
- type: map_at_10
|
405 |
+
value: 65.57600000000001
|
406 |
+
- type: map_at_100
|
407 |
+
value: 66.096
|
408 |
+
- type: map_at_1000
|
409 |
+
value: 66.103
|
410 |
+
- type: map_at_3
|
411 |
+
value: 63.217
|
412 |
+
- type: map_at_5
|
413 |
+
value: 64.562
|
414 |
+
- type: mrr_at_1
|
415 |
+
value: 55.00000000000001
|
416 |
+
- type: mrr_at_10
|
417 |
+
value: 65.57600000000001
|
418 |
+
- type: mrr_at_100
|
419 |
+
value: 66.096
|
420 |
+
- type: mrr_at_1000
|
421 |
+
value: 66.103
|
422 |
+
- type: mrr_at_3
|
423 |
+
value: 63.217
|
424 |
+
- type: mrr_at_5
|
425 |
+
value: 64.562
|
426 |
+
- type: ndcg_at_1
|
427 |
+
value: 55.00000000000001
|
428 |
+
- type: ndcg_at_10
|
429 |
+
value: 70.74000000000001
|
430 |
+
- type: ndcg_at_100
|
431 |
+
value: 73.001
|
432 |
+
- type: ndcg_at_1000
|
433 |
+
value: 73.223
|
434 |
+
- type: ndcg_at_3
|
435 |
+
value: 65.837
|
436 |
+
- type: ndcg_at_5
|
437 |
+
value: 68.264
|
438 |
+
- type: precision_at_1
|
439 |
+
value: 55.00000000000001
|
440 |
+
- type: precision_at_10
|
441 |
+
value: 8.7
|
442 |
+
- type: precision_at_100
|
443 |
+
value: 0.97
|
444 |
+
- type: precision_at_1000
|
445 |
+
value: 0.099
|
446 |
+
- type: precision_at_3
|
447 |
+
value: 24.467
|
448 |
+
- type: precision_at_5
|
449 |
+
value: 15.86
|
450 |
+
- type: recall_at_1
|
451 |
+
value: 55.00000000000001
|
452 |
+
- type: recall_at_10
|
453 |
+
value: 87.0
|
454 |
+
- type: recall_at_100
|
455 |
+
value: 97.0
|
456 |
+
- type: recall_at_1000
|
457 |
+
value: 98.8
|
458 |
+
- type: recall_at_3
|
459 |
+
value: 73.4
|
460 |
+
- type: recall_at_5
|
461 |
+
value: 79.3
|
462 |
+
- task:
|
463 |
+
type: Classification
|
464 |
+
dataset:
|
465 |
+
type: C-MTEB/IFlyTek-classification
|
466 |
+
name: MTEB IFlyTek
|
467 |
+
config: default
|
468 |
+
split: validation
|
469 |
+
revision: None
|
470 |
+
metrics:
|
471 |
+
- type: accuracy
|
472 |
+
value: 51.696806464024625
|
473 |
+
- type: f1
|
474 |
+
value: 40.02655259854763
|
475 |
+
- task:
|
476 |
+
type: Classification
|
477 |
+
dataset:
|
478 |
+
type: C-MTEB/JDReview-classification
|
479 |
+
name: MTEB JDReview
|
480 |
+
config: default
|
481 |
+
split: test
|
482 |
+
revision: None
|
483 |
+
metrics:
|
484 |
+
- type: accuracy
|
485 |
+
value: 88.87429643527206
|
486 |
+
- type: ap
|
487 |
+
value: 59.89821610336161
|
488 |
+
- type: f1
|
489 |
+
value: 83.98100504939507
|
490 |
+
- task:
|
491 |
+
type: STS
|
492 |
+
dataset:
|
493 |
+
type: C-MTEB/LCQMC
|
494 |
+
name: MTEB LCQMC
|
495 |
+
config: default
|
496 |
+
split: test
|
497 |
+
revision: None
|
498 |
+
metrics:
|
499 |
+
- type: cos_sim_pearson
|
500 |
+
value: 72.59510783330644
|
501 |
+
- type: cos_sim_spearman
|
502 |
+
value: 79.75022839599451
|
503 |
+
- type: euclidean_pearson
|
504 |
+
value: 79.54475341768782
|
505 |
+
- type: euclidean_spearman
|
506 |
+
value: 79.75021730266204
|
507 |
+
- type: manhattan_pearson
|
508 |
+
value: 79.53741020350834
|
509 |
+
- type: manhattan_spearman
|
510 |
+
value: 79.74152434784455
|
511 |
+
- task:
|
512 |
+
type: Reranking
|
513 |
+
dataset:
|
514 |
+
type: C-MTEB/Mmarco-reranking
|
515 |
+
name: MTEB MMarcoReranking
|
516 |
+
config: default
|
517 |
+
split: dev
|
518 |
+
revision: None
|
519 |
+
metrics:
|
520 |
+
- type: map
|
521 |
+
value: 38.86925357762224
|
522 |
+
- type: mrr
|
523 |
+
value: 38.17460317460318
|
524 |
+
- task:
|
525 |
+
type: Retrieval
|
526 |
+
dataset:
|
527 |
+
type: C-MTEB/MMarcoRetrieval
|
528 |
+
name: MTEB MMarcoRetrieval
|
529 |
+
config: default
|
530 |
+
split: dev
|
531 |
+
revision: None
|
532 |
+
metrics:
|
533 |
+
- type: map_at_1
|
534 |
+
value: 68.731
|
535 |
+
- type: map_at_10
|
536 |
+
value: 78.52
|
537 |
+
- type: map_at_100
|
538 |
+
value: 78.792
|
539 |
+
- type: map_at_1000
|
540 |
+
value: 78.797
|
541 |
+
- type: map_at_3
|
542 |
+
value: 76.586
|
543 |
+
- type: map_at_5
|
544 |
+
value: 77.876
|
545 |
+
- type: mrr_at_1
|
546 |
+
value: 71.003
|
547 |
+
- type: mrr_at_10
|
548 |
+
value: 79.03
|
549 |
+
- type: mrr_at_100
|
550 |
+
value: 79.27
|
551 |
+
- type: mrr_at_1000
|
552 |
+
value: 79.274
|
553 |
+
- type: mrr_at_3
|
554 |
+
value: 77.373
|
555 |
+
- type: mrr_at_5
|
556 |
+
value: 78.46600000000001
|
557 |
+
- type: ndcg_at_1
|
558 |
+
value: 71.003
|
559 |
+
- type: ndcg_at_10
|
560 |
+
value: 82.381
|
561 |
+
- type: ndcg_at_100
|
562 |
+
value: 83.504
|
563 |
+
- type: ndcg_at_1000
|
564 |
+
value: 83.627
|
565 |
+
- type: ndcg_at_3
|
566 |
+
value: 78.78699999999999
|
567 |
+
- type: ndcg_at_5
|
568 |
+
value: 80.94
|
569 |
+
- type: precision_at_1
|
570 |
+
value: 71.003
|
571 |
+
- type: precision_at_10
|
572 |
+
value: 9.961
|
573 |
+
- type: precision_at_100
|
574 |
+
value: 1.05
|
575 |
+
- type: precision_at_1000
|
576 |
+
value: 0.106
|
577 |
+
- type: precision_at_3
|
578 |
+
value: 29.694
|
579 |
+
- type: precision_at_5
|
580 |
+
value: 18.963
|
581 |
+
- type: recall_at_1
|
582 |
+
value: 68.731
|
583 |
+
- type: recall_at_10
|
584 |
+
value: 93.697
|
585 |
+
- type: recall_at_100
|
586 |
+
value: 98.546
|
587 |
+
- type: recall_at_1000
|
588 |
+
value: 99.515
|
589 |
+
- type: recall_at_3
|
590 |
+
value: 84.328
|
591 |
+
- type: recall_at_5
|
592 |
+
value: 89.42
|
593 |
+
- task:
|
594 |
+
type: Classification
|
595 |
+
dataset:
|
596 |
+
type: mteb/amazon_massive_intent
|
597 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
598 |
+
config: zh-CN
|
599 |
+
split: test
|
600 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
601 |
+
metrics:
|
602 |
+
- type: accuracy
|
603 |
+
value: 76.79219905850707
|
604 |
+
- type: f1
|
605 |
+
value: 73.15228001501512
|
606 |
+
- task:
|
607 |
+
type: Classification
|
608 |
+
dataset:
|
609 |
+
type: mteb/amazon_massive_scenario
|
610 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
611 |
+
config: zh-CN
|
612 |
+
split: test
|
613 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
614 |
+
metrics:
|
615 |
+
- type: accuracy
|
616 |
+
value: 84.9562878278413
|
617 |
+
- type: f1
|
618 |
+
value: 84.0910677219451
|
619 |
+
- task:
|
620 |
+
type: Retrieval
|
621 |
+
dataset:
|
622 |
+
type: C-MTEB/MedicalRetrieval
|
623 |
+
name: MTEB MedicalRetrieval
|
624 |
+
config: default
|
625 |
+
split: dev
|
626 |
+
revision: None
|
627 |
+
metrics:
|
628 |
+
- type: map_at_1
|
629 |
+
value: 57.8
|
630 |
+
- type: map_at_10
|
631 |
+
value: 64.732
|
632 |
+
- type: map_at_100
|
633 |
+
value: 65.315
|
634 |
+
- type: map_at_1000
|
635 |
+
value: 65.347
|
636 |
+
- type: map_at_3
|
637 |
+
value: 63.14999999999999
|
638 |
+
- type: map_at_5
|
639 |
+
value: 63.934999999999995
|
640 |
+
- type: mrr_at_1
|
641 |
+
value: 57.99999999999999
|
642 |
+
- type: mrr_at_10
|
643 |
+
value: 64.852
|
644 |
+
- type: mrr_at_100
|
645 |
+
value: 65.435
|
646 |
+
- type: mrr_at_1000
|
647 |
+
value: 65.467
|
648 |
+
- type: mrr_at_3
|
649 |
+
value: 63.266999999999996
|
650 |
+
- type: mrr_at_5
|
651 |
+
value: 64.072
|
652 |
+
- type: ndcg_at_1
|
653 |
+
value: 57.8
|
654 |
+
- type: ndcg_at_10
|
655 |
+
value: 68.14
|
656 |
+
- type: ndcg_at_100
|
657 |
+
value: 71.04899999999999
|
658 |
+
- type: ndcg_at_1000
|
659 |
+
value: 71.856
|
660 |
+
- type: ndcg_at_3
|
661 |
+
value: 64.813
|
662 |
+
- type: ndcg_at_5
|
663 |
+
value: 66.241
|
664 |
+
- type: precision_at_1
|
665 |
+
value: 57.8
|
666 |
+
- type: precision_at_10
|
667 |
+
value: 7.89
|
668 |
+
- type: precision_at_100
|
669 |
+
value: 0.927
|
670 |
+
- type: precision_at_1000
|
671 |
+
value: 0.099
|
672 |
+
- type: precision_at_3
|
673 |
+
value: 23.200000000000003
|
674 |
+
- type: precision_at_5
|
675 |
+
value: 14.62
|
676 |
+
- type: recall_at_1
|
677 |
+
value: 57.8
|
678 |
+
- type: recall_at_10
|
679 |
+
value: 78.9
|
680 |
+
- type: recall_at_100
|
681 |
+
value: 92.7
|
682 |
+
- type: recall_at_1000
|
683 |
+
value: 99.0
|
684 |
+
- type: recall_at_3
|
685 |
+
value: 69.6
|
686 |
+
- type: recall_at_5
|
687 |
+
value: 73.1
|
688 |
+
- task:
|
689 |
+
type: Classification
|
690 |
+
dataset:
|
691 |
+
type: C-MTEB/MultilingualSentiment-classification
|
692 |
+
name: MTEB MultilingualSentiment
|
693 |
+
config: default
|
694 |
+
split: validation
|
695 |
+
revision: None
|
696 |
+
metrics:
|
697 |
+
- type: accuracy
|
698 |
+
value: 79.22333333333333
|
699 |
+
- type: f1
|
700 |
+
value: 79.01276765455862
|
701 |
+
- task:
|
702 |
+
type: PairClassification
|
703 |
+
dataset:
|
704 |
+
type: C-MTEB/OCNLI
|
705 |
+
name: MTEB Ocnli
|
706 |
+
config: default
|
707 |
+
split: validation
|
708 |
+
revision: None
|
709 |
+
metrics:
|
710 |
+
- type: cos_sim_accuracy
|
711 |
+
value: 85.32755820249052
|
712 |
+
- type: cos_sim_ap
|
713 |
+
value: 90.56118966152913
|
714 |
+
- type: cos_sim_f1
|
715 |
+
value: 86.28428927680798
|
716 |
+
- type: cos_sim_precision
|
717 |
+
value: 81.75803402646503
|
718 |
+
- type: cos_sim_recall
|
719 |
+
value: 91.34107708553326
|
720 |
+
- type: dot_accuracy
|
721 |
+
value: 85.32755820249052
|
722 |
+
- type: dot_ap
|
723 |
+
value: 90.56120405888693
|
724 |
+
- type: dot_f1
|
725 |
+
value: 86.28428927680798
|
726 |
+
- type: dot_precision
|
727 |
+
value: 81.75803402646503
|
728 |
+
- type: dot_recall
|
729 |
+
value: 91.34107708553326
|
730 |
+
- type: euclidean_accuracy
|
731 |
+
value: 85.32755820249052
|
732 |
+
- type: euclidean_ap
|
733 |
+
value: 90.56118966152913
|
734 |
+
- type: euclidean_f1
|
735 |
+
value: 86.28428927680798
|
736 |
+
- type: euclidean_precision
|
737 |
+
value: 81.75803402646503
|
738 |
+
- type: euclidean_recall
|
739 |
+
value: 91.34107708553326
|
740 |
+
- type: manhattan_accuracy
|
741 |
+
value: 85.43584190579317
|
742 |
+
- type: manhattan_ap
|
743 |
+
value: 90.52296007826511
|
744 |
+
- type: manhattan_f1
|
745 |
+
value: 86.42099949520444
|
746 |
+
- type: manhattan_precision
|
747 |
+
value: 82.7852998065764
|
748 |
+
- type: manhattan_recall
|
749 |
+
value: 90.3907074973601
|
750 |
+
- type: max_accuracy
|
751 |
+
value: 85.43584190579317
|
752 |
+
- type: max_ap
|
753 |
+
value: 90.56120405888693
|
754 |
+
- type: max_f1
|
755 |
+
value: 86.42099949520444
|
756 |
+
- task:
|
757 |
+
type: Classification
|
758 |
+
dataset:
|
759 |
+
type: C-MTEB/OnlineShopping-classification
|
760 |
+
name: MTEB OnlineShopping
|
761 |
+
config: default
|
762 |
+
split: test
|
763 |
+
revision: None
|
764 |
+
metrics:
|
765 |
+
- type: accuracy
|
766 |
+
value: 94.87999999999998
|
767 |
+
- type: ap
|
768 |
+
value: 93.12892276945414
|
769 |
+
- type: f1
|
770 |
+
value: 94.86921245385685
|
771 |
+
- task:
|
772 |
+
type: STS
|
773 |
+
dataset:
|
774 |
+
type: C-MTEB/PAWSX
|
775 |
+
name: MTEB PAWSX
|
776 |
+
config: default
|
777 |
+
split: test
|
778 |
+
revision: None
|
779 |
+
metrics:
|
780 |
+
- type: cos_sim_pearson
|
781 |
+
value: 38.4367277229591
|
782 |
+
- type: cos_sim_spearman
|
783 |
+
value: 45.942712312151656
|
784 |
+
- type: euclidean_pearson
|
785 |
+
value: 44.96055989566686
|
786 |
+
- type: euclidean_spearman
|
787 |
+
value: 45.94279939044163
|
788 |
+
- type: manhattan_pearson
|
789 |
+
value: 44.979762134562925
|
790 |
+
- type: manhattan_spearman
|
791 |
+
value: 45.96004430328375
|
792 |
+
- task:
|
793 |
+
type: STS
|
794 |
+
dataset:
|
795 |
+
type: C-MTEB/QBQTC
|
796 |
+
name: MTEB QBQTC
|
797 |
+
config: default
|
798 |
+
split: test
|
799 |
+
revision: None
|
800 |
+
metrics:
|
801 |
+
- type: cos_sim_pearson
|
802 |
+
value: 41.45428416733968
|
803 |
+
- type: cos_sim_spearman
|
804 |
+
value: 43.462057455255845
|
805 |
+
- type: euclidean_pearson
|
806 |
+
value: 38.20089604291246
|
807 |
+
- type: euclidean_spearman
|
808 |
+
value: 43.46288438624811
|
809 |
+
- type: manhattan_pearson
|
810 |
+
value: 38.175045608320694
|
811 |
+
- type: manhattan_spearman
|
812 |
+
value: 43.468885824666344
|
813 |
+
- task:
|
814 |
+
type: STS
|
815 |
+
dataset:
|
816 |
+
type: mteb/sts22-crosslingual-sts
|
817 |
+
name: MTEB STS22 (zh)
|
818 |
+
config: zh
|
819 |
+
split: test
|
820 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
821 |
+
metrics:
|
822 |
+
- type: cos_sim_pearson
|
823 |
+
value: 65.61911213187778
|
824 |
+
- type: cos_sim_spearman
|
825 |
+
value: 66.70525921118497
|
826 |
+
- type: euclidean_pearson
|
827 |
+
value: 65.35554462551515
|
828 |
+
- type: euclidean_spearman
|
829 |
+
value: 66.70525921118497
|
830 |
+
- type: manhattan_pearson
|
831 |
+
value: 65.25174169329627
|
832 |
+
- type: manhattan_spearman
|
833 |
+
value: 66.6550752269368
|
834 |
+
- task:
|
835 |
+
type: STS
|
836 |
+
dataset:
|
837 |
+
type: C-MTEB/STSB
|
838 |
+
name: MTEB STSB
|
839 |
+
config: default
|
840 |
+
split: test
|
841 |
+
revision: None
|
842 |
+
metrics:
|
843 |
+
- type: cos_sim_pearson
|
844 |
+
value: 81.27160581568329
|
845 |
+
- type: cos_sim_spearman
|
846 |
+
value: 83.34482829304406
|
847 |
+
- type: euclidean_pearson
|
848 |
+
value: 82.98079434913451
|
849 |
+
- type: euclidean_spearman
|
850 |
+
value: 83.34503180775212
|
851 |
+
- type: manhattan_pearson
|
852 |
+
value: 82.95256917013506
|
853 |
+
- type: manhattan_spearman
|
854 |
+
value: 83.31034894907503
|
855 |
+
- task:
|
856 |
+
type: Reranking
|
857 |
+
dataset:
|
858 |
+
type: C-MTEB/T2Reranking
|
859 |
+
name: MTEB T2Reranking
|
860 |
+
config: default
|
861 |
+
split: dev
|
862 |
+
revision: None
|
863 |
+
metrics:
|
864 |
+
- type: map
|
865 |
+
value: 69.29054152015013
|
866 |
+
- type: mrr
|
867 |
+
value: 79.73472208788729
|
868 |
+
- task:
|
869 |
+
type: Retrieval
|
870 |
+
dataset:
|
871 |
+
type: C-MTEB/T2Retrieval
|
872 |
+
name: MTEB T2Retrieval
|
873 |
+
config: default
|
874 |
+
split: dev
|
875 |
+
revision: None
|
876 |
+
metrics:
|
877 |
+
- type: map_at_1
|
878 |
+
value: 27.0
|
879 |
+
- type: map_at_10
|
880 |
+
value: 75.871
|
881 |
+
- type: map_at_100
|
882 |
+
value: 79.664
|
883 |
+
- type: map_at_1000
|
884 |
+
value: 79.725
|
885 |
+
- type: map_at_3
|
886 |
+
value: 53.14
|
887 |
+
- type: map_at_5
|
888 |
+
value: 65.365
|
889 |
+
- type: mrr_at_1
|
890 |
+
value: 88.642
|
891 |
+
- type: mrr_at_10
|
892 |
+
value: 91.732
|
893 |
+
- type: mrr_at_100
|
894 |
+
value: 91.818
|
895 |
+
- type: mrr_at_1000
|
896 |
+
value: 91.821
|
897 |
+
- type: mrr_at_3
|
898 |
+
value: 91.217
|
899 |
+
- type: mrr_at_5
|
900 |
+
value: 91.561
|
901 |
+
- type: ndcg_at_1
|
902 |
+
value: 88.642
|
903 |
+
- type: ndcg_at_10
|
904 |
+
value: 83.815
|
905 |
+
- type: ndcg_at_100
|
906 |
+
value: 87.689
|
907 |
+
- type: ndcg_at_1000
|
908 |
+
value: 88.266
|
909 |
+
- type: ndcg_at_3
|
910 |
+
value: 84.807
|
911 |
+
- type: ndcg_at_5
|
912 |
+
value: 83.53699999999999
|
913 |
+
- type: precision_at_1
|
914 |
+
value: 88.642
|
915 |
+
- type: precision_at_10
|
916 |
+
value: 41.725
|
917 |
+
- type: precision_at_100
|
918 |
+
value: 5.024
|
919 |
+
- type: precision_at_1000
|
920 |
+
value: 0.516
|
921 |
+
- type: precision_at_3
|
922 |
+
value: 74.10600000000001
|
923 |
+
- type: precision_at_5
|
924 |
+
value: 62.192
|
925 |
+
- type: recall_at_1
|
926 |
+
value: 27.0
|
927 |
+
- type: recall_at_10
|
928 |
+
value: 83.292
|
929 |
+
- type: recall_at_100
|
930 |
+
value: 95.66799999999999
|
931 |
+
- type: recall_at_1000
|
932 |
+
value: 98.56
|
933 |
+
- type: recall_at_3
|
934 |
+
value: 55.111
|
935 |
+
- type: recall_at_5
|
936 |
+
value: 69.327
|
937 |
+
- task:
|
938 |
+
type: Classification
|
939 |
+
dataset:
|
940 |
+
type: C-MTEB/TNews-classification
|
941 |
+
name: MTEB TNews
|
942 |
+
config: default
|
943 |
+
split: validation
|
944 |
+
revision: None
|
945 |
+
metrics:
|
946 |
+
- type: accuracy
|
947 |
+
value: 54.346
|
948 |
+
- type: f1
|
949 |
+
value: 52.302508458396055
|
950 |
+
- task:
|
951 |
+
type: Clustering
|
952 |
+
dataset:
|
953 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
954 |
+
name: MTEB ThuNewsClusteringP2P
|
955 |
+
config: default
|
956 |
+
split: test
|
957 |
+
revision: None
|
958 |
+
metrics:
|
959 |
+
- type: v_measure
|
960 |
+
value: 72.47709523787981
|
961 |
+
- task:
|
962 |
+
type: Clustering
|
963 |
+
dataset:
|
964 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
965 |
+
name: MTEB ThuNewsClusteringS2S
|
966 |
+
config: default
|
967 |
+
split: test
|
968 |
+
revision: None
|
969 |
+
metrics:
|
970 |
+
- type: v_measure
|
971 |
+
value: 69.35293863978707
|
972 |
+
- task:
|
973 |
+
type: Retrieval
|
974 |
+
dataset:
|
975 |
+
type: C-MTEB/VideoRetrieval
|
976 |
+
name: MTEB VideoRetrieval
|
977 |
+
config: default
|
978 |
+
split: dev
|
979 |
+
revision: None
|
980 |
+
metrics:
|
981 |
+
- type: map_at_1
|
982 |
+
value: 64.60000000000001
|
983 |
+
- type: map_at_10
|
984 |
+
value: 75.683
|
985 |
+
- type: map_at_100
|
986 |
+
value: 75.961
|
987 |
+
- type: map_at_1000
|
988 |
+
value: 75.96199999999999
|
989 |
+
- type: map_at_3
|
990 |
+
value: 74.083
|
991 |
+
- type: map_at_5
|
992 |
+
value: 75.03800000000001
|
993 |
+
- type: mrr_at_1
|
994 |
+
value: 64.60000000000001
|
995 |
+
- type: mrr_at_10
|
996 |
+
value: 75.683
|
997 |
+
- type: mrr_at_100
|
998 |
+
value: 75.961
|
999 |
+
- type: mrr_at_1000
|
1000 |
+
value: 75.96199999999999
|
1001 |
+
- type: mrr_at_3
|
1002 |
+
value: 74.083
|
1003 |
+
- type: mrr_at_5
|
1004 |
+
value: 75.03800000000001
|
1005 |
+
- type: ndcg_at_1
|
1006 |
+
value: 64.60000000000001
|
1007 |
+
- type: ndcg_at_10
|
1008 |
+
value: 80.26299999999999
|
1009 |
+
- type: ndcg_at_100
|
1010 |
+
value: 81.487
|
1011 |
+
- type: ndcg_at_1000
|
1012 |
+
value: 81.5
|
1013 |
+
- type: ndcg_at_3
|
1014 |
+
value: 77.003
|
1015 |
+
- type: ndcg_at_5
|
1016 |
+
value: 78.708
|
1017 |
+
- type: precision_at_1
|
1018 |
+
value: 64.60000000000001
|
1019 |
+
- type: precision_at_10
|
1020 |
+
value: 9.43
|
1021 |
+
- type: precision_at_100
|
1022 |
+
value: 0.997
|
1023 |
+
- type: precision_at_1000
|
1024 |
+
value: 0.1
|
1025 |
+
- type: precision_at_3
|
1026 |
+
value: 28.467
|
1027 |
+
- type: precision_at_5
|
1028 |
+
value: 17.9
|
1029 |
+
- type: recall_at_1
|
1030 |
+
value: 64.60000000000001
|
1031 |
+
- type: recall_at_10
|
1032 |
+
value: 94.3
|
1033 |
+
- type: recall_at_100
|
1034 |
+
value: 99.7
|
1035 |
+
- type: recall_at_1000
|
1036 |
+
value: 99.8
|
1037 |
+
- type: recall_at_3
|
1038 |
+
value: 85.39999999999999
|
1039 |
+
- type: recall_at_5
|
1040 |
+
value: 89.5
|
1041 |
+
- task:
|
1042 |
+
type: Classification
|
1043 |
+
dataset:
|
1044 |
+
type: C-MTEB/waimai-classification
|
1045 |
+
name: MTEB Waimai
|
1046 |
+
config: default
|
1047 |
+
split: test
|
1048 |
+
revision: None
|
1049 |
+
metrics:
|
1050 |
+
- type: accuracy
|
1051 |
+
value: 89.36
|
1052 |
+
- type: ap
|
1053 |
+
value: 75.26507519569006
|
1054 |
+
- type: f1
|
1055 |
+
value: 87.89845508858562
|
1056 |
+
language:
|
1057 |
+
- zh
|
1058 |
+
license: mit
|
1059 |
+
---
|
1060 |
+
<h2 align="left">ZPoint Large Embedding for Chinese</h2>
|
1061 |
+
**[2024-06-04]** release zpoint_large_embedding_zh, and upload model weight to huggingface
|
1062 |
+
|
1063 |
+
```python
|
1064 |
+
from sentence_transformers import SentenceTransformer
|
1065 |
+
sentences1 = ["这个产品真垃圾"]
|
1066 |
+
sentences2 = ["我太喜欢这个产品了"]
|
1067 |
+
model = SentenceTransformer('iampanda/zpoint_large_embedding_zh')
|
1068 |
+
embeddings_1 = model.encode(sentences1, normalize_embeddings=True)
|
1069 |
+
embeddings_2 = model.encode(sentences2, normalize_embeddings=True)
|
1070 |
+
similarity = embeddings_1 @ embeddings_2.T
|
1071 |
+
print(similarity)
|
1072 |
+
```
|