File size: 13,963 Bytes
1260e0b
 
 
342b75d
1260e0b
 
c4c2bb1
342b75d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260e0b
1d44358
58f9604
fecd580
617f997
5c2c39a
58f9604
1d44358
 
dc19756
 
 
 
 
 
 
 
 
 
 
 
58f9604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6f8c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58f9604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342b75d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
---
language:
- en
license: llama2
tags:
- moe
- moerge
model-index:
- name: aegolius-acadicus-v1-30b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 72.61
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-v1-30b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 87.99
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-v1-30b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.11
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-v1-30b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 67.06
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-v1-30b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 84.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-v1-30b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.58
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibivibiv/aegolius-acadicus-v1-30b
      name: Open LLM Leaderboard
---
# Aegolius Acadicus 30B

MOE 4x7b model using the Mixtral branch of the mergekit.  NOT A MERGE.  It is tagged as an moe and is an moe.

![img](./aegolius-acadicus.png)

I like to call this model "The little professor".  It is simply a MOE merge of lora merged models across Llama2 and Mistral.  I am using this as a test case to move to larger models and get my gate discrimination set correctly.  This model is best suited for knowledge related use cases, I did not give it a specific workload target as I did with some of the other models in the "Owl Series".

This model is merged from the following sources:

[Westlake-7B](https://huggingface.co/senseable/Westlake-7B)
[WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)
[openchat-nectar-0.5](https://huggingface.co/andysalerno/openchat-nectar-0.5)
[WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2)
[WestSeverus-7B-DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO)

Unless those models are "contaminated" this one is not.  This is a proof of concept version of this series and you can find others where I am tuning my own models and using moe mergekit to combine them to make moe models that I can run on lower tier hardware with better results.

The goal here is to create specialized models that can collaborate and run as one model.

# Prompting

## Prompt Template for alpaca style

```
### Instruction:

<prompt> (without the <>)

### Response:
```

## Sample Code

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.set_default_device("cuda")

model = AutoModelForCausalLM.from_pretrained("ibivibiv/aegolius-acadicus-30b", torch_dtype="auto", device_config='auto')
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/aegolius-acadicus-30b")

inputs = tokenizer("### Instruction: Who would when in an arm wrestling match between Abraham Lincoln and Chuck Norris?\n### Response:\n", return_tensors="pt", return_attention_mask=False)

outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```

# Model Details
* **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv)
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **Model type:**  **aegolius-acadicus-30b** is an auto-regressive language model moe from Llama 2 transformer architecture models and mistral models.
* **Language(s)**: English
* **Purpose**: This model is an attempt at an moe model to cover multiple disciplines using finetuned llama 2 and mistral models as base models.

# Benchmark Scores

| Test Name                                            | Accuracy             |
|------------------------------------------------------|----------------------|
| all                                                  | 0.6566791267920726   |
|arc:challenge                          | 0.7005119453924915   |
|hellaswag                               | 0.7103166699860586   |
|hendrycksTest-abstract_algebra           | 0.34                 |
|hendrycksTest-anatomy                    | 0.6666666666666666   |
|hendrycksTest-astronomy                  | 0.6907894736842105   |
|hendrycksTest-business_ethics            | 0.65                 |
|hendrycksTest-clinical_knowledge         | 0.7132075471698113   |
|hendrycksTest-college_biology            | 0.7708333333333334   |
|hendrycksTest-college_chemistry          | 0.48                 |
|hendrycksTest-college_computer_science   | 0.53                 |
|hendrycksTest-college_mathematics        | 0.33                 |
|hendrycksTest-college_medicine           | 0.6705202312138728   |
|hendrycksTest-college_physics            | 0.4019607843137255   |
|hendrycksTest-computer_security          | 0.77                 |
|hendrycksTest-conceptual_physics         | 0.5787234042553191   |
|hendrycksTest-econometrics               | 0.5                  |
|hendrycksTest-electrical_engineering     | 0.5517241379310345   |
|hendrycksTest-elementary_mathematics     | 0.42592592592592593  |
|hendrycksTest-formal_logic               | 0.48412698412698413  |
|hendrycksTest-global_facts               | 0.37                 |
|hendrycksTest-high_school_biology        | 0.7806451612903226   |
|hendrycksTest-high_school_chemistry      | 0.4975369458128079   |
|hendrycksTest-high_school_computer_science | 0.69              |
|hendrycksTest-high_school_european_history | 0.7757575757575758 |
|hendrycksTest-high_school_geography      | 0.803030303030303    |
|hendrycksTest-high_school_government_and_politics | 0.8963730569948186 |
|hendrycksTest-high_school_macroeconomics | 0.6641025641025641   |
|hendrycksTest-high_school_mathematics    | 0.36666666666666664  |
|hendrycksTest-high_school_microeconomics | 0.6890756302521008   |
|hendrycksTest-high_school_physics        | 0.37748344370860926  |
|hendrycksTest-high_school_psychology     | 0.8403669724770643   |
|hendrycksTest-high_school_statistics     | 0.5                  |
|hendrycksTest-high_school_us_history     | 0.8480392156862745   |
|hendrycksTest-high_school_world_history  | 0.8059071729957806   |
|hendrycksTest-human_aging                | 0.6995515695067265   |
|hendrycksTest-human_sexuality            | 0.7938931297709924   |
|hendrycksTest-international_law          | 0.8099173553719008   |
|hendrycksTest-jurisprudence              | 0.7870370370370371   |
|hendrycksTest-logical_fallacies          | 0.7484662576687117   |
|hendrycksTest-machine_learning           | 0.4375               |
|hendrycksTest-management                 | 0.7766990291262136   |
|hendrycksTest-marketing                  | 0.8888888888888888   |
|hendrycksTest-medical_genetics           | 0.72                 |
|hendrycksTest-miscellaneous              | 0.8314176245210728   |
|hendrycksTest-moral_disputes             | 0.7398843930635838   |
|hendrycksTest-moral_scenarios            | 0.4324022346368715   |
|hendrycksTest-nutrition                  | 0.7189542483660131   |
|hendrycksTest-philosophy                 | 0.7041800643086816   |
|hendrycksTest-prehistory                 | 0.7469135802469136   |
|hendrycksTest-professional_accounting    | 0.5035460992907801   |
|hendrycksTest-professional_law           | 0.4758800521512386   |
|hendrycksTest-professional_medicine      | 0.6727941176470589   |
|hendrycksTest-professional_psychology    | 0.6666666666666666   |
|hendrycksTest-public_relations           | 0.6727272727272727   |
|hendrycksTest-security_studies           | 0.7183673469387755   |
|hendrycksTest-sociology                  | 0.8407960199004975   |
|hendrycksTest-us_foreign_policy          | 0.85                 |
|hendrycksTest-virology                   | 0.5542168674698795   |
|hendrycksTest-world_religions            | 0.8421052631578947   |
|truthfulqa:mc                            | 0.6707176642401714   |
|winogrande                               | 0.8492501973164956   |
|gsm8k                                    | 0.7050796057619408   |


## Citations

```
@misc{open-llm-leaderboard,
  author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
  title = {Open LLM Leaderboard},
  year = {2023},
  publisher = {Hugging Face},
  howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
}
```
```
@software{eval-harness,
  author       = {Gao, Leo and
                  Tow, Jonathan and
                  Biderman, Stella and
                  Black, Sid and
                  DiPofi, Anthony and
                  Foster, Charles and
                  Golding, Laurence and
                  Hsu, Jeffrey and
                  McDonell, Kyle and
                  Muennighoff, Niklas and
                  Phang, Jason and
                  Reynolds, Laria and
                  Tang, Eric and
                  Thite, Anish and
                  Wang, Ben and
                  Wang, Kevin and
                  Zou, Andy},
  title        = {A framework for few-shot language model evaluation},
  month        = sep,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.0.1},
  doi          = {10.5281/zenodo.5371628},
  url          = {https://doi.org/10.5281/zenodo.5371628}
}
```
```
@misc{clark2018think,
      title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
      author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
      year={2018},
      eprint={1803.05457},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```
```
@misc{zellers2019hellaswag,
      title={HellaSwag: Can a Machine Really Finish Your Sentence?},
      author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
      year={2019},
      eprint={1905.07830},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
```
@misc{hendrycks2021measuring,
      title={Measuring Massive Multitask Language Understanding},
      author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
      year={2021},
      eprint={2009.03300},
      archivePrefix={arXiv},
      primaryClass={cs.CY}
}
```
```
@misc{lin2022truthfulqa,
      title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
      author={Stephanie Lin and Jacob Hilton and Owain Evans},
      year={2022},
      eprint={2109.07958},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
```
@misc{DBLP:journals/corr/abs-1907-10641,
      title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
      author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
      year={2019},
      eprint={1907.10641},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
```
@misc{DBLP:journals/corr/abs-2110-14168,
      title={Training Verifiers to Solve Math Word Problems},
      author={Karl Cobbe and
                  Vineet Kosaraju and
                  Mohammad Bavarian and
                  Mark Chen and
                  Heewoo Jun and
                  Lukasz Kaiser and
                  Matthias Plappert and
                  Jerry Tworek and
                  Jacob Hilton and
                  Reiichiro Nakano and
                  Christopher Hesse and
                  John Schulman},
      year={2021},
      eprint={2110.14168},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ibivibiv__aegolius-acadicus-v1-30b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |74.70|
|AI2 Reasoning Challenge (25-Shot)|72.61|
|HellaSwag (10-Shot)              |87.99|
|MMLU (5-Shot)                    |65.11|
|TruthfulQA (0-shot)              |67.06|
|Winogrande (5-shot)              |84.85|
|GSM8k (5-shot)                   |70.58|