Update README.md
Browse files
README.md
CHANGED
@@ -129,7 +129,7 @@ model-index:
|
|
129 |
|
130 |
## Usage
|
131 |
### Intended use
|
132 |
-
The model is designed to respond to coding related instructions over long-conext input and can be used to build coding assistants.
|
133 |
|
134 |
<!-- TO DO: Check starcoder2 instruct code example that includes the template https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1 -->
|
135 |
|
@@ -167,7 +167,7 @@ for i in output:
|
|
167 |
<!-- TO DO: Check this part -->
|
168 |
## Training Data
|
169 |
Granite Code Instruct models are trained on a mix of short and long context data as follows.
|
170 |
-
* Short-Context Instruction Data: [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft), [BigCode-SC2-Instruct](bigcode/self-oss-instruct-sc2-exec-filter-50k), [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct), [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA), [Glaive-Code-Assistant-v3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [Glaive-Function-Calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [NL2SQL11](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction), [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer), [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) including a synthetically generated dataset for API calling and multi-turn code
|
171 |
* Long-Context Instruction Data: A synthetically-generated dataset by bootstrapping the repository-level file-packed documents through Granite-8b-Code-Instruct to improve long-context capability of the model.
|
172 |
|
173 |
## Infrastructure
|
|
|
129 |
|
130 |
## Usage
|
131 |
### Intended use
|
132 |
+
The model is designed to respond to coding related instructions over long-conext input up to 128K length and can be used to build coding assistants.
|
133 |
|
134 |
<!-- TO DO: Check starcoder2 instruct code example that includes the template https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1 -->
|
135 |
|
|
|
167 |
<!-- TO DO: Check this part -->
|
168 |
## Training Data
|
169 |
Granite Code Instruct models are trained on a mix of short and long context data as follows.
|
170 |
+
* Short-Context Instruction Data: [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft), [BigCode-SC2-Instruct](bigcode/self-oss-instruct-sc2-exec-filter-50k), [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct), [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA), [Glaive-Code-Assistant-v3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [Glaive-Function-Calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [NL2SQL11](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction), [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer), [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) including a synthetically generated dataset for API calling and multi-turn code interactions with execution feedback. We also include a collection of hardcoded prompts to ensure our model generates correct outputs given inquiries about its name or developers.
|
171 |
* Long-Context Instruction Data: A synthetically-generated dataset by bootstrapping the repository-level file-packed documents through Granite-8b-Code-Instruct to improve long-context capability of the model.
|
172 |
|
173 |
## Infrastructure
|