File size: 6,897 Bytes
c7f61ec
6433344
 
 
c7f61ec
 
6433344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
tags:
- information retrieval
- reranking
license: apache-2.0
---

# Model Card for FEVER Context Encoder in Re2G
 
# Model Details

> The approach of RAG, Multi-DPR, and KGI is to train a neural IR (Information Retrieval) component and further train it end-to-end through its impact in generating the correct output. 

<img src="https://github.com/IBM/kgi-slot-filling/raw/re2g/model_cards/Re2G_Arch2.png" width="100%"> 

## Training, Evaluation and Inference
The code for training, evaluation and inference is in our github in the [re2g branch](https://github.com/IBM/kgi-slot-filling/tree/re2g).

## Usage

The best way to use the model is by adapting the [dpr_apply.py](https://github.com/IBM/kgi-slot-filling/blob/re2g/dpr/dpr_apply.py)

## Citation
```
@inproceedings{glass-etal-2022-re2g,
    title = "{R}e2{G}: Retrieve, Rerank, Generate",
    author = "Glass, Michael  and
      Rossiello, Gaetano  and
      Chowdhury, Md Faisal Mahbub  and
      Naik, Ankita  and
      Cai, Pengshan  and
      Gliozzo, Alfio",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jul,
    year = "2022",
    address = "Seattle, United States",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-main.194",
    doi = "10.18653/v1/2022.naacl-main.194",
    pages = "2701--2715",
    abstract = "As demonstrated by GPT-3 and T5, transformers grow in capability as parameter spaces become larger and larger. However, for tasks that require a large amount of knowledge, non-parametric memory allows models to grow dramatically with a sub-linear increase in computational cost and GPU memory requirements. Recent models such as RAG and REALM have introduced retrieval into conditional generation. These models incorporate neural initial retrieval from a corpus of passages. We build on this line of research, proposing Re2G, which combines both neural initial retrieval and reranking into a BART-based sequence-to-sequence generation. Our reranking approach also permits merging retrieval results from sources with incomparable scores, enabling an ensemble of BM25 and neural initial retrieval. To train our system end-to-end, we introduce a novel variation of knowledge distillation to train the initial retrieval, reranker and generation using only ground truth on the target sequence output. We find large gains in four diverse tasks: zero-shot slot filling, question answering, fact checking and dialog, with relative gains of 9{\%} to 34{\%} over the previous state-of-the-art on the KILT leaderboard. We make our code available as open source.",
}
```
 
## Model Description
The model creators note in the [associated paper](https://aclanthology.org/2022.naacl-main.194.pdf):
> As demonstrated by GPT-3 and T5, transformers grow in capability as parameter spaces become larger and larger.  However, for tasks that require a large amount of knowledge, non-parametric memory allows models to grow dramatically with a sub-linear increase in computational cost and GPU memory requirements.  Recent models such as RAG and REALM have introduced retrieval into conditional generation.  These models incorporate neural initial retrieval from a corpus of passages.  We build on this line of research, proposing Re2G, which combines both neural initial retrieval and reranking into a BART-based sequence-to-sequence generation.  Our reranking approach also permits merging retrieval results from sources with incomparable scores, enabling an ensemble of BM25 and neural initial retrieval.  To train our system end-to-end, we introduce a novel variation of knowledge distillation to train the initial retrieval, reranker and generation using only ground truth on the target sequence output.  We find large gains in four diverse tasks: zero-shot slot filling, question answering, fact checking and dialog, with relative gains of 9% to 34% over the previous state-of-the-art on the KILT leaderboard.  We make our code available as open source.

- **Developed by:** IBM
- **Shared by [Optional]:** IBM

- **Model type:** Query/Passage Reranker
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Parent Model:** [dpr-question_encoder-multiset-base](https://huggingface.co/facebook/dpr-question_encoder-multiset-base)
- **Resources for more information:** 
  - [GitHub Repo](https://github.com/IBM/kgi-slot-filling)
   - [Associated Paper](https://aclanthology.org/2022.naacl-main.194.pdf)


# Uses
 

## Direct Use
This model can be used for the task of encoding a passage to a vector, this passage or context vector should then be indexed into an Approximate Nearest Neighbors index.  It must be used in combination with a query or question encoder that encodes a question to a query vector to search the index. 


# Citation

 
**BibTeX:**

```bibtex
@inproceedings{glass-etal-2022-re2g,
    title = "{R}e2{G}: Retrieve, Rerank, Generate",
    author = "Glass, Michael  and
      Rossiello, Gaetano  and
      Chowdhury, Md Faisal Mahbub  and
      Naik, Ankita  and
      Cai, Pengshan  and
      Gliozzo, Alfio",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jul,
    year = "2022",
    address = "Seattle, United States",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-main.194",
    doi = "10.18653/v1/2022.naacl-main.194",
    pages = "2701--2715",
    abstract = "As demonstrated by GPT-3 and T5, transformers grow in capability as parameter spaces become larger and larger. However, for tasks that require a large amount of knowledge, non-parametric memory allows models to grow dramatically with a sub-linear increase in computational cost and GPU memory requirements. Recent models such as RAG and REALM have introduced retrieval into conditional generation. These models incorporate neural initial retrieval from a corpus of passages. We build on this line of research, proposing Re2G, which combines both neural initial retrieval and reranking into a BART-based sequence-to-sequence generation. Our reranking approach also permits merging retrieval results from sources with incomparable scores, enabling an ensemble of BM25 and neural initial retrieval. To train our system end-to-end, we introduce a novel variation of knowledge distillation to train the initial retrieval, reranker and generation using only ground truth on the target sequence output. We find large gains in four diverse tasks: zero-shot slot filling, question answering, fact checking and dialog, with relative gains of 9{\%} to 34{\%} over the previous state-of-the-art on the KILT leaderboard. We make our code available as open source.",
}
 
```