--- base_model: nadsoft/hamsa_small tags: - whisper-event - generated_from_trainer datasets: - nadsoft/QASR-Speech-Resource metrics: - wer model-index: - name: hamsa-small-finetuned-qasr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nadsoft/QASR-Speech-Resource default type: nadsoft/QASR-Speech-Resource metrics: - name: Wer type: wer value: 22.587152044424403 --- # hamsa-small-finetuned-qasr This model is a fine-tuned version of [nadsoft/hamsa_small](https://huggingface.co/nadsoft/hamsa_small) on the nadsoft/QASR-Speech-Resource default dataset. It achieves the following results on the evaluation set: - Loss: 0.2831 - Wer: 22.5872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.3207 | 0.03 | 2500 | 0.3458 | 24.4928 | | 0.3264 | 0.05 | 5000 | 0.3316 | 23.4082 | | 0.3223 | 0.08 | 7500 | 0.3239 | 25.1050 | | 0.3121 | 0.1 | 10000 | 0.3143 | 23.4557 | | 0.3103 | 0.13 | 12500 | 0.3079 | 23.4296 | | 0.3041 | 0.15 | 15000 | 0.3033 | 23.2113 | | 0.3077 | 0.18 | 17500 | 0.2998 | 21.7091 | | 0.2867 | 0.2 | 20000 | 0.2943 | 20.1761 | | 0.265 | 0.23 | 22500 | 0.2921 | 21.6522 | | 0.3096 | 0.25 | 25000 | 0.2894 | 22.1505 | | 0.2813 | 0.28 | 27500 | 0.2863 | 22.4993 | | 0.2805 | 0.3 | 30000 | 0.2832 | 21.0114 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0