Update README.md
Browse files
README.md
CHANGED
@@ -21,48 +21,52 @@ from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoToken
|
|
21 |
import torch
|
22 |
from PIL import Image
|
23 |
import re
|
|
|
24 |
|
25 |
def prepare(text):
|
26 |
-
text = text.replace('. ', '.').replace(' .', '.')
|
27 |
-
text = text.replace('( ', '(').replace(' (', '(')
|
28 |
-
text = text.replace(') ', ')').replace(' )', ')')
|
29 |
-
text = text.replace(': ', ':').replace(' :', ':')
|
30 |
-
text = text.replace('_ ', '_').replace(' _', '_')
|
31 |
-
text = text.replace(',(())', '').replace('(()),', '')
|
32 |
-
for i in range(10):
|
33 |
-
text = text.replace(')))', '))').replace('(((', '((')
|
34 |
text = re.sub(r'<[^>]*>', '', text)
|
|
|
|
|
|
|
|
|
|
|
35 |
return text
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
|
41 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
model.to(device)
|
43 |
|
44 |
-
max_length =
|
45 |
num_beams = 4
|
46 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
47 |
-
def predict_step(image_paths):
|
48 |
-
images = []
|
49 |
-
for image_path in image_paths:
|
50 |
-
i_image = Image.open(image_path)
|
51 |
-
if i_image.mode != "RGB":
|
52 |
-
i_image = i_image.convert(mode="RGB")
|
53 |
-
|
54 |
-
images.append(i_image)
|
55 |
|
56 |
-
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
57 |
-
pixel_values = pixel_values.to(device)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
```
|
67 |
|
68 |
## Additional Information
|
|
|
21 |
import torch
|
22 |
from PIL import Image
|
23 |
import re
|
24 |
+
import requests
|
25 |
|
26 |
def prepare(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
text = re.sub(r'<[^>]*>', '', text)
|
28 |
+
text = ','.join(list(set(text.split(',')))[:-1])
|
29 |
+
for i in range(5):
|
30 |
+
if text[0]==',' or text[0]==' ':
|
31 |
+
text=text[1:]
|
32 |
+
|
33 |
return text
|
34 |
|
35 |
+
path_to_model = "ifmain/vit-gpt2-image2promt-stable-diffusion"
|
36 |
+
|
37 |
+
model = VisionEncoderDecoderModel.from_pretrained(path_to_model)
|
38 |
+
feature_extractor = ViTImageProcessor.from_pretrained(path_to_model)
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(path_to_model)
|
40 |
|
41 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
model.to(device)
|
43 |
|
44 |
+
max_length = 256
|
45 |
num_beams = 4
|
46 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
|
|
|
|
48 |
|
49 |
+
def predict_step(image_paths):
|
50 |
+
images = []
|
51 |
+
for image_path in image_paths:
|
52 |
+
if 'http' in image_path:
|
53 |
+
i_image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
54 |
+
else:
|
55 |
+
i_image = Image.open(image_path).convert('RGB')
|
56 |
+
images.append(i_image)
|
57 |
+
|
58 |
+
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
59 |
+
pixel_values = pixel_values.to(device)
|
60 |
+
|
61 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
62 |
+
|
63 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
64 |
+
preds = [prepare(pred).strip() for pred in preds]
|
65 |
+
return preds
|
66 |
+
|
67 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
68 |
+
result = predict_step([img_url]) # ['red shirt, chromatic aberration, light emitting object, barefoot, best quality, ocean background, 1girl, 8k wallpaper, intricate details, chromatic light, light, ocean, backpack, ultra-detailed, ocean light,masterpiece']
|
69 |
+
print(result)
|
70 |
```
|
71 |
|
72 |
## Additional Information
|