--- datasets: - Ar4ikov/civitai-sd-337k language: - en pipeline_tag: image-to-text base_model: nlpconnect/vit-gpt2-image-captioning license: apache-2.0 --- # Overview The `ifmain/vit-gpt2-image2promt-stable-diffusion` model builds upon [nlpconnect/vit-gpt2-image-captioning](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) and is trained on the [Ar4ikov/civitai-sd-337k](https://huggingface.co/datasets/Ar4ikov/civitai-sd-337k) dataset, which includes 2,000 images. This model is specifically designed to generate text descriptions of images in a format suitable for prompts used with Stable Diffusion models. Training was conducted using the [Vit-GPT-Easy-Trainer](https://github.com/ifmain/Vit-GPT-Easy-Trainer) code. # Example Usage ```python from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer import torch from PIL import Image import re import requests def prepare(text): text = re.sub(r'<[^>]*>', '', text) text = ','.join(list(set(text.split(',')))[:-1]) for i in range(5): if text[0]==',' or text[0]==' ': text=text[1:] return text path_to_model = "ifmain/vit-gpt2-image2promt-stable-diffusion" model = VisionEncoderDecoderModel.from_pretrained(path_to_model) feature_extractor = ViTImageProcessor.from_pretrained(path_to_model) tokenizer = AutoTokenizer.from_pretrained(path_to_model) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 256 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(image_paths): images = [] for image_path in image_paths: if 'http' in image_path: i_image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') else: i_image = Image.open(image_path).convert('RGB') images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [prepare(pred).strip() for pred in preds] return preds img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' result = predict_step([img_url]) # ['red shirt, chromatic aberration, light emitting object, barefoot, best quality, ocean background, 1girl, 8k wallpaper, intricate details, chromatic light, light, ocean, backpack, ultra-detailed, ocean light,masterpiece'] print(result) ``` ## Additional Information This model supports both SFW and NSFW content.