Upload 13 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +123 -1
- config.json +27 -0
- config_sentence_transformers.json +7 -0
- eval/binary_classification_evaluation_Valid_Topic_Boundaries_results.csv +11 -0
- merges.txt +0 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,125 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
---
|
9 |
+
|
10 |
+
# {MODEL_NAME}
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
+
|
14 |
+
<!--- Describe your model here -->
|
15 |
+
|
16 |
+
## Usage (Sentence-Transformers)
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
Then you can use the model like this:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from sentence_transformers import SentenceTransformer
|
28 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
+
|
30 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
+
embeddings = model.encode(sentences)
|
32 |
+
print(embeddings)
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Usage (HuggingFace Transformers)
|
38 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModel
|
42 |
+
import torch
|
43 |
+
|
44 |
+
|
45 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
46 |
+
def mean_pooling(model_output, attention_mask):
|
47 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
48 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
49 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
+
|
51 |
+
|
52 |
+
# Sentences we want sentence embeddings for
|
53 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
+
|
55 |
+
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
57 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
58 |
+
|
59 |
+
# Tokenize sentences
|
60 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
61 |
+
|
62 |
+
# Compute token embeddings
|
63 |
+
with torch.no_grad():
|
64 |
+
model_output = model(**encoded_input)
|
65 |
+
|
66 |
+
# Perform pooling. In this case, mean pooling.
|
67 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
+
|
69 |
+
print("Sentence embeddings:")
|
70 |
+
print(sentence_embeddings)
|
71 |
+
```
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
## Evaluation Results
|
76 |
+
|
77 |
+
<!--- Describe how your model was evaluated -->
|
78 |
+
|
79 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
+
|
81 |
+
|
82 |
+
## Training
|
83 |
+
The model was trained with the parameters:
|
84 |
+
|
85 |
+
**DataLoader**:
|
86 |
+
|
87 |
+
`torch.utils.data.dataloader.DataLoader` of length 11254 with parameters:
|
88 |
+
```
|
89 |
+
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
90 |
+
```
|
91 |
+
|
92 |
+
**Loss**:
|
93 |
+
|
94 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
95 |
+
|
96 |
+
Parameters of the fit()-Method:
|
97 |
+
```
|
98 |
+
{
|
99 |
+
"epochs": 10,
|
100 |
+
"evaluation_steps": 0,
|
101 |
+
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
|
102 |
+
"max_grad_norm": 1,
|
103 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
104 |
+
"optimizer_params": {
|
105 |
+
"lr": 2e-05
|
106 |
+
},
|
107 |
+
"scheduler": "WarmupLinear",
|
108 |
+
"steps_per_epoch": null,
|
109 |
+
"warmup_steps": 10000,
|
110 |
+
"weight_decay": 0.01
|
111 |
+
}
|
112 |
+
```
|
113 |
+
|
114 |
+
|
115 |
+
## Full Model Architecture
|
116 |
+
```
|
117 |
+
SentenceTransformer(
|
118 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
|
119 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
120 |
+
)
|
121 |
+
```
|
122 |
+
|
123 |
+
## Citing & Authors
|
124 |
+
|
125 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.18.0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.0",
|
4 |
+
"transformers": "4.18.0",
|
5 |
+
"pytorch": "1.11.0"
|
6 |
+
}
|
7 |
+
}
|
eval/binary_classification_evaluation_Valid_Topic_Boundaries_results.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cossim_accuracy,cossim_accuracy_threshold,cossim_f1,cossim_precision,cossim_recall,cossim_f1_threshold,cossim_ap,manhatten_accuracy,manhatten_accuracy_threshold,manhatten_f1,manhatten_precision,manhatten_recall,manhatten_f1_threshold,manhatten_ap,euclidean_accuracy,euclidean_accuracy_threshold,euclidean_f1,euclidean_precision,euclidean_recall,euclidean_f1_threshold,euclidean_ap,dot_accuracy,dot_accuracy_threshold,dot_f1,dot_precision,dot_recall,dot_f1_threshold,dot_ap
|
2 |
+
0,-1,0.9439362535795109,0.1942729651927948,0.9685996382087642,0.9535447188615549,0.9841375688719586,0.1647069752216339,0.9902755193638794,0.9368541317260017,487.0047607421875,0.9645212757208416,0.9518012644153905,0.9775858763513908,498.6268310546875,0.9898180767245379,0.942097977896749,24.628259658813477,0.9675310024572241,0.9525532705449024,0.9829872717118588,25.403541564941406,0.9898257269375648,0.9442438534945548,78.79898834228516,0.9686986121160297,0.9556939949220873,0.9820620326917787,75.07635498046875,0.9900140526691402
|
3 |
+
1,-1,0.9470561955749555,0.18167856335639954,0.9702743933780444,0.9574670107610654,0.9834290525052305,0.18167856335639954,0.9912960496040254,0.9387949407137782,479.0604248046875,0.965502722382983,0.9563713383817732,0.9748101592911502,479.4814758300781,0.9907058000029847,0.9444123010670787,24.648906707763672,0.9687756981678234,0.9559230438416411,0.9819786778251048,24.865650177001953,0.990866311518843,0.9474663287950139,68.83369445800781,0.9705034521611474,0.9577313897996949,0.9836207686985805,68.81210327148438,0.9903996870224162
|
4 |
+
2,-1,0.9463311386323522,0.22136378288269043,0.9698651733368368,0.9556078735953011,0.9845543432053281,0.17708265781402588,0.9905355310308794,0.9395566166938868,454.2745361328125,0.9659684678193056,0.9544729604374501,0.9777442505980711,461.0172119140625,0.9904393931016515,0.9455474912297405,25.55816650390625,0.9695038166373393,0.9543817430066541,0.9851128208120431,25.559284210205078,0.9901726452959991,0.9464409957448678,81.23705291748047,0.9699218123413933,0.9573414309376116,0.9828372329518459,81.23705291748047,0.9897013960712675
|
5 |
+
3,-1,0.9457232626097656,0.18248775601387024,0.9694735932801593,0.9570217327745834,0.9822537488851286,0.139762282371521,0.9909181937486247,0.937073845951033,504.1842956542969,0.9645830928786954,0.9541291885147642,0.9752686110578566,504.8411865234375,0.9903830035704351,0.9438996345420056,26.65975570678711,0.968497590024511,0.9558476137904162,0.9814868841117289,26.65975570678711,0.9905645871013672,0.9460235387173084,66.33551025390625,0.9696585715049759,0.9573348064144015,0.982303761805133,57.859554290771484,0.9906879011626413
|
6 |
+
4,-1,0.9436652727019723,0.11534753441810608,0.9683488477995987,0.9534342634631853,0.9837374655119239,0.06546029448509216,0.9900469736993498,0.9334339136230143,513.6358642578125,0.9626392402983603,0.9488967164662537,0.9767856696313214,522.61083984375,0.9894900538887156,0.9410872924616049,27.711666107177734,0.9669730040206778,0.9521212561908686,0.9822954263184656,27.918235778808594,0.9897008326041719,0.9437971012369911,50.360958099365234,0.9684617881102132,0.954807614418793,0.9825121489718177,36.10419845581055,0.989799752282519
|
7 |
+
5,-1,0.9429621871818721,0.11458128690719604,0.9679751301472946,0.9552172184033048,0.9810784452650267,0.11458128690719604,0.9899560337774227,0.9326063233753964,513.9761352539062,0.962089564536728,0.9511489805394221,0.973284765231018,513.9761352539062,0.9891385367307349,0.9404720926315173,28.27408218383789,0.9666365651424349,0.9522446239820139,0.9814702131383941,28.27408218383789,0.9896793488721957,0.943291758519419,65.82530212402344,0.9680972712390072,0.9556133013926672,0.980911735531679,51.612796783447266,0.9891788757454277
|
8 |
+
6,-1,0.940581949744033,0.09761971235275269,0.9667227028578457,0.9513076879624922,0.982645516758496,0.04933968186378479,0.9895408037915339,0.9311049428376824,548.2176513671875,0.9615290349988562,0.9427742932897573,0.9810451033183573,558.80859375,0.9888136447393836,0.9381138266161813,28.64573097229004,0.965285020901259,0.9512694545837144,0.9797197609382424,28.986019134521484,0.9892326950498872,0.9408602544290726,43.0414924621582,0.966812388399729,0.9524367953674199,0.9816285873850745,30.146373748779297,0.9878655790861148
|
9 |
+
7,-1,0.9391757787038325,0.030027329921722412,0.9659112831395277,0.9514960375222384,0.9807700322583334,0.030027329921722412,0.9890914588974957,0.9293399052299309,545.63623046875,0.9604531781323569,0.9422227211855368,0.9794030124448816,561.580810546875,0.9883382311635116,0.9361583700134025,29.675506591796875,0.964211667234605,0.9500412614682611,0.978811192891497,29.675506591796875,0.9887414510150588,0.9393369024688555,34.53508377075195,0.965934841866728,0.9516594808409439,0.9806449999583225,14.90319538116455,0.9863649329706106
|
10 |
+
8,-1,0.938912121633795,0.060673296451568604,0.9657690103953508,0.9486777464199854,0.9834874009119022,-0.012976646423339844,0.9891983928664781,0.9280362674947452,552.2633056640625,0.9596400449943757,0.9421553981334233,0.9777859280314081,571.57470703125,0.9881091301374394,0.9355285225683128,30.27292251586914,0.9639386670814472,0.9470069247287614,0.9814868841117289,30.674551010131836,0.9887845514212033,0.93908789301382,30.922779083251953,0.9657991372681254,0.9530889848391391,0.9788528703248339,30.922779083251953,0.9856311459374316
|
11 |
+
9,-1,0.9379746742736614,-0.006018996238708496,0.9653101767464722,0.9489956993057681,0.9821954004784569,-0.006138503551483154,0.9885918376836251,0.92750895335467,558.5787353515625,0.9594141332961563,0.9441606340136713,0.975168585217848,558.8121337890625,0.9876599182719511,0.9346643132831897,30.3677978515625,0.9634728235515579,0.9463250721480422,0.981253490485042,31.051837921142578,0.9882595765259202,0.9379819980811624,5.89303731918335,0.9652957824934774,0.9489289740698985,0.9822370779117939,-3.409907817840576,0.9836457854227416
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4a54052511dcb4d1a63061cb1220ca92d7ad667d4d8fe377c1b51a4bcb918fc
|
3 |
+
size 498652017
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"errors": "replace", "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": "<mask>", "add_prefix_space": false, "trim_offsets": true, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "roberta-base", "tokenizer_class": "RobertaTokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|